化工学报

• •    

等离子体辅助制备N掺杂NiMo合金助力高效碱性水氧化

王艳皎1(), 王旻1,2(), 吴明铂2,3(), 胡涵1()   

  1. 1.中国石油大学(华东)化学化工学院,山东 青岛 266580
    2.中国石油大学(华东)新能源学院,山东 青岛 266580
    3.青岛科技大学化学工程学院,山东 青岛 266042
  • 收稿日期:2025-09-05 修回日期:2025-11-12 出版日期:2025-11-13
  • 通讯作者: 王旻,吴明铂,胡涵
  • 作者简介:王艳皎(1996—),女,博士研究生,wyj9162@163.com
  • 基金资助:
    山东省自然科学基金(ZR2023LFG005)

Plasma-prepared N-doped NiMo alloy boosts efficient alkaline water oxidation

Yanjiao WANG1(), Min WANG1,2(), Mingbo WU2,3(), Han HU1()   

  1. 1.College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
    2.College of New Energy, China University of Petroleum (East China), Qingdao 266580, Shandong, China
    3.College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
  • Received:2025-09-05 Revised:2025-11-12 Online:2025-11-13
  • Contact: Min WANG, Mingbo WU, Han HU

摘要:

电解水制氢是实现能源结构调整与优化的最具潜力绿色制氢技术,阳极析氧反应 (OER) 缓慢的四电子转移过程是限制整体效率的重要原因。因此,高效稳定OER催化剂的开发对电解水实际应用意义重大。本文采用成本低廉、绿色高效的氮气等离子体技术制备了氮 (N) 掺杂NiMo合金催化剂 (N-NiMo),展现了优异的OER性能。N以原子的形式掺杂在NiMo合金晶格中且引发了晶格压缩应变,有效调控了NiMo合金的电子结构,该催化剂在100 mA/cm2的电流密度下过电位低至230 mV (1.0 M KOH)。在模拟碱化海水 (1.0 M KOH + 0.5 M NaCl) 和碱化真实海水 (1.0 M KOH + 海水) 中,N-NiMo仍具有较好的催化活性 (η100=265 mV, η100=266 mV)。此外,在500 mA/cm2工业电流密度下,该催化剂在碱水和碱化真实海水中可持续工作1000 h,表现出优异稳定性。最后,使用N-NiMo作为阳极构建了阴离子交换膜电解槽,在碱化真实海水中,该电解槽仅在1.77 V的低电压下即可达到1000 mA/cm2的电流密度,展现出实际应用的巨大潜力。

关键词: 电化学, 析氧反应, 催化剂, 等离子体, 海水电解

Abstract:

Water electrolysis stands as the most promising green hydrogen production technology for energy structure adjustment and optimization. The sluggish four-electron transfer process of the anodic oxygen evolution reaction (OER) significantly limits overall electrolysis efficiency, making the development of highly efficient and stable OER catalysts critical for practical applications. In this study, a cost-effective and environmentally benign nitrogen plasma technique was employed to fabricate a N-doped NiMo alloy catalyst (N-NiMo). Nitrogen (N) atoms were successfully doped into the NiMo alloy lattice, inducing compressive lattice strain. Benefiting from optimized electronic structures, N-NiMo demonstrates exceptional OER performance with an ultralow overpotential of 230 mV at 100 mA/cm2 in 1.0 M KOH. In simulated alkalized seawater (1.0 M KOH + 0.5 M NaCl) and real alkalized seawater (1.0 M KOH + seawater) electrolytes, N-NiMo retained remarkable catalytic activity (η100=265 mV, η100=266 mV). Furthermore, under industrial-scale current density (500 mA/cm2), the catalyst demonstrated exceptional stability with continuous operation for 1000 h in both alkalized water and real alkalized seawater environments. Finally, an anion exchange membrane electrolyzer incorporating the N-NiMo as the anode achieved an industrial-grade current density of 1000 mA/cm2 at ultralow cell voltages of 1.77 V in real alkalized seawater electrolytes, demonstrating significant potential for practical implementation.

Key words: electrochemistry, oxygen evolution reaction, catalyst, plasma, seawater electrolysis

中图分类号: