| [1] |
黄晟, 杨振丽, 李振宇. 氢产业链发展的路径分析[J]. 化工进展, 2024, 43(2): 882-893.
|
|
Huang S, Yang Z L, Li Z Y. Analysis of optimization path of developing China's hydrogen industry[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 882-893.
|
| [2] |
张真, 张凡, 云祉婷. 绿氢在石化和化工行业的减碳经济性分析[J]. 化工进展, 2024, 43(6): 3021-3028.
|
|
Zhang Z, Zhang F, Yun Z T. Carbon reduction and techno-economic analysis of using green hydrogen in chemical and petrochemical industry[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3021-3028.
|
| [3] |
Wan L, Xu Z A, Xu Q, et al. Key components and design strategy of the membrane electrode assembly for alkaline water electrolysis[J]. Energy & Environmental Science, 2023, 16(4): 1384-1430.
|
| [4] |
Zainal B S, Ker P J, Mohamed H, et al. Recent advancement and assessment of green hydrogen production technologies[J]. Renewable and Sustainable Energy Reviews, 2024, 189: 113941.
|
| [5] |
张生安, 刘桂莲. 高效太阳能电解水制氢系统及其性能的多目标优化[J]. 化工学报, 2023, 74(3): 1260-1274.
|
|
Zhang S A, Liu G L. Multi-objective optimization of high-efficiency solar water electrolysis hydrogen production system and its performance[J]. CIESC Journal, 2023, 74(3): 1260-1274.
|
| [6] |
Liu Y, Wang Y, Fornasiero P, et al. Long-term durability of seawater electrolysis for hydrogen: from catalysts to systems[J]. Angewandte Chemie International Edition, 2024, 63(47): e202412087.
|
| [7] |
Wang Y J, Wang M, Yang Y Q, et al. Potential technology for seawater electrolysis: Anion-exchange membrane water electrolysis[J]. Chem Catalysis, 2023, 3(7): 100643.
|
| [8] |
Liu D, Cai Y H, Wang X, et al. Innovations in electrocatalysts, hybrid anodic oxidation, and electrolyzers for enhanced direct seawater electrolysis[J]. Energy & Environmental Science, 2024, 17(19): 6897-6942.
|
| [9] |
Meskher H, Woldu A R, Chu P K, et al. Sustainability assessment of seawater splitting: Prospects, challenges, and future directions[J]. EcoEnergy, 2024, 2(4): 630-651.
|
| [10] |
Gong S M, Meng Y, Jin Z Y, et al. Recent progress on the stability of electrocatalysts under high current densities toward industrial water splitting[J]. ACS Catalysis, 2024, 14(19): 14399-14435.
|
| [11] |
赵娟, 吴梦成, 雷惊雷, 等. 一步水热法制备电解水析氧反应Ni3S2@Mo2S3高效催化剂[J]. 化工学报, 2022, 73(4): 1575-1584.
|
|
Zhao J, Wu M C, Lei J L, et al. One-step hydrothermal method toward preparation of Ni3S2@Mo2S3 high-efficient catalyst for oxygen evolution reaction in water electrolysis[J]. CIESC Journal, 2022, 73(4): 1575-1584.
|
| [12] |
郑学文, 赵蕊, 吴家哲, 等. 电解海水催化剂的设计与改性[J]. 化工进展, 2022, 41(11): 5800-5810.
|
|
Zheng X W, Zhao R, Wu J Z, et al. Design and modification of electrocatalysts for seawater splitting: a review[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5800-5810.
|
| [13] |
Quan L, Jiang H, Mei G L, et al. Bifunctional electrocatalysts for overall and hybrid water splitting[J]. Chemical Reviews, 2024, 124(7): 3694-3812.
|
| [14] |
柴亚婷,路家伟,王蕊欣,等 碳纸自支撑N掺杂碳纳米管复合MoC/NiCo异质结构的电解水析氧性能 [J]. 化工学报, 2023, 74(12): 4904-4913.
|
|
Chai Y T, Lu J W, Wang R X, et al. Carbon paper self-supported N-doped carbon nanotubes with MoC/NiCo heterostructures for electrolytic water oxygen evolution reactio[J]. CIESC Journal, 2023, 74(12): 4904-4913.
|
| [15] |
Wang Y J, Wang M, Wang B, et al. Ultrafast reconstruction of Ni-based alloy precatalyst for robust seawater oxidation[J]. Advanced Functional Materials, 2025, 35(44): 2509590.
|
| [16] |
Du W, Shi Y M, Zhou W, et al. Unveiling the in situ dissolution and polymerization of Mo in Ni4Mo alloy for promoting the hydrogen evolution reaction[J]. Angewandte Chemie International Edition, 2021, 60(13): 7051-7055.
|
| [17] |
Kang X, Yang F N, Zhang Z Y, et al. A corrosion-resistant RuMoNi catalyst for efficient and long-lasting seawater oxidation and anion exchange membrane electrolyzer[J]. Nature Communications, 2023, 14: 3607.
|
| [18] |
Liu D, Wei X T, Lu J X, et al. Efficient and ultrastable seawater electrolysis at industrial current density with strong metal-support interaction and dual Cl--repelling layers[J]. Advanced Materials, 2024, 36(49): 2408982.
|
| [19] |
Shao L, Han X D, Shi L, et al. In situ generation of molybdate-modulated nickel-iron oxide electrodes with high corrosion resistance for efficient seawater electrolysis[J]. Advanced Energy Materials, 2024, 14(4): 2303261.
|
| [20] |
Xiao L Y, Yang T T, Cheng C Q, et al. Coupled compressive-tensile stains boosting both activity and durability of NiMo electrode for alkaline water/seawater hydrogen evolution at high current densities[J]. Chemical Engineering Journal, 2024, 485: 150044.
|
| [21] |
Zou X X, Zhao X Y, Pang B H, et al. Interstitial oxygen acts as electronic buffer stabilizing high-entropy alloys for trifunctional electrocatalysis[J]. Advanced Materials, 2024, 36(50): 2412954.
|
| [22] |
Fan H F, Chen W, Chen G L, et al. Plasma-heteroatom-doped Ni-V-Fe trimetallic phospho-nitride as high-performance bifunctional electrocatalyst[J]. Applied Catalysis B: Environment and Energy, 2020, 268: 118440.
|
| [23] |
Li Y W, Wang M G, Tian J F, et al. Nitrogen-metal-oxygen moieties enriched surface reconstruction in CoFe electrocatalysts for stabilizing high-valence Co sites enable water oxidation[J]. Applied Surface Science, 2024, 669: 160588.
|
| [24] |
Zhang S Y, Ruan W D, Guan J Q. Strain effects in carbon dioxide electroreduction[J]. Advanced Energy Materials, 2025, 15(14): 2404057.
|
| [25] |
Zhang H M, Chi K B, Qiao L, et al. Boosting acidic hydrogen evolution kinetics induced by weak strain effect in PdPt alloy for proton exchange membrane water electrolyzers[J]. Small, 2024, 20(51): 2406935.
|
| [26] |
Zhu C H, Xu L J, Liu M J, et al. A review on improving mechanical properties of high entropy alloy: interstitial atom doping[J]. Journal of Materials Research and Technology, 2023, 24: 7832-7851.
|
| [27] |
Jiang W T, Li R D, He J Y, et al. Nitrogen-doping assisted local chemical heterogeneity and mechanical properties in CoCrMoW alloys manufactured via laser powder bed fusion[J]. Advanced Powder Materials, 2024, 3(5): 100217.
|
| [28] |
Wang S, Yuan C Z, Zheng Y S, et al. Boosting the bifunctionality and durability of cobalt-fluoride-oxide nanosheets for alkaline water splitting through nitrogen-plasma-promoted electronic regulation and structural reconstruction[J]. ACS Catalysis, 2024, 14(5): 3616-3626.
|
| [29] |
Jin R X, Huang J, Chen G L, et al. Water-sprouted, plasma-enhanced Ni-Co phospho-nitride nanosheets boost electrocatalytic hydrogen and oxygen evolution[J]. Chemical Engineering Journal, 2020, 402: 126257.
|
| [30] |
Patil R B, House S D, Mantri A, et al. Direct observation of Ni–Mo bimetallic catalyst formation via thermal reduction of nickel molybdate nanorods[J]. ACS Catalysis, 2020, 10(18): 10390-10398.
|
| [31] |
Chen K, Kim S, Rajendiran R, et al. Enhancing ORR/OER active sites through lattice distortion of Fe-enriched FeNi3 intermetallic nanoparticles doped N-doped carbon for high-performance rechargeable Zn-air battery[J]. Journal of Colloid and Interface Science, 2021, 582: 977-990.
|
| [32] |
Zhao Z, Qin S Y, Li X, et al. Sulfur-facilitated in situ deep reconstruction of transition metal molybdates toward superior electrocatalytic oxidation of alkaline seawater[J]. Chem Catalysis, 2024, 4(11): 101144.
|
| [33] |
Hao W J, Ma X W, Wang L C, et al. Surface corrosion-resistant and multi-scenario MoNiP electrode for efficient industrial-scale seawater splitting[J]. Advanced Energy Materials, 2025, 15(5): 2403009.
|