化工学报

• •    

低流速下甲醇-柴油顺序输送混油机理研究

付宁1(), 温凯1(), 宫敬1(), 戎若飞1, 聂文1, 邱姝娟2, 李政兵3, 李亮4   

  1. 1.中国石油大学(北京)机械与储运工程学院,北京 102249
    2.国家管网集团联合管道有限责任公司西部分公司,新疆 乌鲁木齐 830011
    3.国家管网集团科学技术研究总院分公司,天津 300450
    4.西藏青藏石油管道有限公司,西藏 拉萨 850000
  • 收稿日期:2025-12-01 修回日期:2026-01-03 出版日期:2026-01-13
  • 通讯作者: 温凯,宫敬
  • 作者简介:付宁(2000—),女,博士研究生,fning1101@163.com
  • 基金资助:
    油气重大专项(2025ZD1403004);国家自然科学基金青年基金项目(51504271)

Investigation of the mixing mechanisms in sequential batch transportation of methanol and diesel at low flow velocity

Ning FU1(), Kai WEN1(), Jing GONG1(), Ruofei RONG1, Wen NIE1, Shujuan QIU2, Zhengbing LI3, Liang LI4   

  1. 1.College of Mechanical and Storage & Transportation Engineering, China University of Petroleum(Beijing), Beijing 102249, China
    2.Western Branch, PipeChina United Pipeline Co. , Ltd. , Urumqi 830011, Xinjiang, China
    3.Research Institute of Science and Technology, PipeChina, Tianjin 300450, China
    4.Tibet Qingzang Petroleum Pipeline Co. , Ltd. , Lhasa 850000, Tibet, China
  • Received:2025-12-01 Revised:2026-01-03 Online:2026-01-13
  • Contact: Kai WEN, Jing GONG

摘要:

在“双碳”目标背景下,利用既有成品油管道顺序输送甲醇具有显著的经济与减排优势。然而,甲醇与柴油在常温呈强不相溶特性,在低流速及非稳态工况下易发生重力分层,界面速度差显著放大混油风险。针对这一问题,提出界面滑移诱导混油机理,建立沿程混油与滑移混油分解框架,构建一维双流体-滑移耦合模型,将混油长度分为轴向等效扩散项与滑移对流项,并基于Reynolds数和密度Froude数分析流速变化对掺混机理的影响。结合Ri与K-H判据判据评估地形风险,并提出汽油隔离的三段批序及停输/再启动调控策略,为成品油管道增输甲醇的设计与运行调控提供理论依据。

关键词: 成品油管道, 甲醇, 界面滑移, 界面张力, 不稳定性, 数学建模, 机理

Abstract:

Under the "dual-carbon" targets, leveraging existing refined-product pipelines to transport methanol via batch (sequential) operation offers significant economic and emission-reduction benefits. However, methanol and diesel are strongly immiscible at ambient conditions; under low flow velocities and unsteady (transient) operations, gravitational stratification readily occurs, and the resulting interfacial velocity difference can markedly amplify the risk of interface contamination. To address this issue, an interface-slip-induced mixing mechanism is proposed. A decomposition framework is established to separate axial (along-line) mixing from slip-induced mixing, and a one-dimensional two-fluid–slip coupled model is developed. The mixing length is expressed as the sum of an axial equivalent-diffusion term and a slip-advection term, and the influence of velocity variations on the dominant mixing mechanism is analyzed in terms of the Reynolds number and the densimetric Froude number. Terrain-related risks are further assessed using the Richardson number and the Kelvin-Helmholtz instability criterion. In addition, a three-segment batching scheme employing gasoline as an intermediate buffer, together with shutdown/restart control strategies, is proposed to provide a theoretical basis for the design and operational regulation of methanol throughput enhancement in refined-product pipelines.

Key words: refined-product pipeline, methanol, interfacial slip, interfacial tension, instability, mathematical modeling, mechanism

中图分类号: