• •
收稿日期:2025-12-16
修回日期:2026-01-29
出版日期:2026-01-30
通讯作者:
曹景沛
作者简介:呼延成(1989—),男,博士,教授,ychu@cumt.edu.cn
基金资助:
Cheng HUYAN(
), Xu ZHANG, Yanhong TAN, Jingpei CAO(
)
Received:2025-12-16
Revised:2026-01-29
Online:2026-01-30
Contact:
Jingpei CAO
摘要:
高密度特种燃料因具有高能量密度、低冰点等优异性能,对提升飞行器航程、载荷与机动性具有关键意义,是国防航空领域的战略性能源。目前,此类燃料主要依赖石油资源,在“碳达峰、碳中和”背景下,开发可再生替代路线尤为迫切。木质素作为木质纤维素中富含芳环结构的主要组分之一,尚未得到高效利用,其独特的环状骨架为构建高密度燃料提供了理想前体。本文系统综述了木质素平台化合物(如苯酚类、苯甲醛类、苯醌、环己酮等)转化为高密度特种燃料的研究进展,重点阐述了烷基化、羟醛缩合、Diels‑Alder反应、迈克尔加成等构建多环燃料前驱体的方法,并分析了当前合成过程中面临的挑战。未来研究需关注燃料分子结构与性能之间的构效关系,以突破高密度、高热值、低冰点难以兼具的瓶颈,还应开展全生命周期碳排放分析和技术经济性评估,为技术可持续性与产业化决策提供支撑。本综述旨在为木质素基高密度特种燃料的研究提供参考,并为其可持续开发提供思路。
中图分类号:
呼延成, 张旭, 谭艳红, 曹景沛. 木质素衍生物制备高密度特种燃料研究进展[J]. 化工学报, DOI: 10.11949/0438-1157.20251416.
Cheng HUYAN, Xu ZHANG, Yanhong TAN, Jingpei CAO. Research progress on preparing high-density specialty fuels from lignin derivatives[J]. CIESC Journal, DOI: 10.11949/0438-1157.20251416.
| Material | Chemical structure of fuel | Density (g/mL) | Combustion Heat (MJ/L) | Freezing point (℃) | Ref. |
|---|---|---|---|---|---|
![]() | ![]() | 0.936 | 39.6 | -79 | [ |
![]() | ![]() | 0.927 | 39.0 | -40 | [ |
![]() | ![]() | 0.873 | 37.28 | -42 | [ |
![]() | ![]() | 0.956 | 38.9 | -21.5 | [ |
![]() | ![]() | 0.93 | 39.23 | -40 | [ |
![]() | ![]() | 0.91 | 42.89 | < -60 | [ |
![]() | ![]() | 0.918 | 41.2 | < -55 | [ |
![]() | ![]() | 0.865 | - | < -60 | [ |
![]() | ![]() | 0.90 | 41.6 | -26.6 | [ |
![]() | ![]() | 0.964 | 40.1 | - | [ |
![]() | ![]() | 0.99 | - | -22 | [ |
![]() | ![]() | 0.95 | 39.2 | -17 | [ |
![]() | ![]() | 0.946 | - | -35 | [ |
![]() | ![]() | 0.88 | 39.0 | - | [ |
![]() | ![]() | 0.943 | 42.3 | -46 | [ |
![]() | ![]() | 0.91 | - | -48.1--37.1 | [ |
![]() | ![]() | 0.966 | 43.1 | -67 | [ |
![]() | ![]() | 0.887 | 38.11 | 1.2 | [ |
![]() | ![]() | 0.893 | 38.41 | -51 | [ |
![]() | ![]() | 0.876 | 37.1 | < -110 | [ |
![]() | ![]() | - | - | -23.5 | [ |
![]() | ![]() | 0.91 | - | < -71 | [ |
![]() | ![]() | 0.938 | 39.87 | < -55 | [ |
![]() | ![]() | 0.903 | 38.58 | -55 | [ |
表1 石油基和木质素基高密度特种燃料性能
Table 1 Performance of petroleum-based and lignin-based high-density specialty fuels
| Material | Chemical structure of fuel | Density (g/mL) | Combustion Heat (MJ/L) | Freezing point (℃) | Ref. |
|---|---|---|---|---|---|
![]() | ![]() | 0.936 | 39.6 | -79 | [ |
![]() | ![]() | 0.927 | 39.0 | -40 | [ |
![]() | ![]() | 0.873 | 37.28 | -42 | [ |
![]() | ![]() | 0.956 | 38.9 | -21.5 | [ |
![]() | ![]() | 0.93 | 39.23 | -40 | [ |
![]() | ![]() | 0.91 | 42.89 | < -60 | [ |
![]() | ![]() | 0.918 | 41.2 | < -55 | [ |
![]() | ![]() | 0.865 | - | < -60 | [ |
![]() | ![]() | 0.90 | 41.6 | -26.6 | [ |
![]() | ![]() | 0.964 | 40.1 | - | [ |
![]() | ![]() | 0.99 | - | -22 | [ |
![]() | ![]() | 0.95 | 39.2 | -17 | [ |
![]() | ![]() | 0.946 | - | -35 | [ |
![]() | ![]() | 0.88 | 39.0 | - | [ |
![]() | ![]() | 0.943 | 42.3 | -46 | [ |
![]() | ![]() | 0.91 | - | -48.1--37.1 | [ |
![]() | ![]() | 0.966 | 43.1 | -67 | [ |
![]() | ![]() | 0.887 | 38.11 | 1.2 | [ |
![]() | ![]() | 0.893 | 38.41 | -51 | [ |
![]() | ![]() | 0.876 | 37.1 | < -110 | [ |
![]() | ![]() | - | - | -23.5 | [ |
![]() | ![]() | 0.91 | - | < -71 | [ |
![]() | ![]() | 0.938 | 39.87 | < -55 | [ |
![]() | ![]() | 0.903 | 38.58 | -55 | [ |
| [1] | Zhang X W, Pan L, Wang L, et al. Review on synthesis and properties of high-energy-density liquid fuels: Hydrocarbons, nanofluids and energetic ionic liquids[J]. Chemical Engineering Science, 2018, 180: 95-125. |
| [2] | Wang X Y, Jia T H, Pan L, et al. Review on the relationship between liquid aerospace fuel composition and their physicochemical properties[J]. Transactions of Tianjin University, 2021, 27(2): 87-109. |
| [3] | Wang C W, Zhang W L, Qiu X Q, et al. Hydrothermal treatment of lignocellulosic biomass towards low-carbon development: Production of high-value-added bioproducts[J]. EnergyChem, 2024, 6(6): 100133. |
| [4] | Zhang Z R, Song J L, Han B X. Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids[J]. Chemical Reviews, 2017, 117(10): 6834-6880. |
| [5] | Zhou C H, Xia X, Lin C X, et al. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels[J]. Chemical Society Reviews, 2011, 40(11): 5588-5617. |
| [6] | Alonso D M, Wettstein S G, Mellmer M A, et al. Integrated conversion of hemicellulose and cellulose from lignocellulosic biomass[J]. Energy & Environmental Science, 2013, 6(1): 76-80. |
| [7] | 呼延成, 张文静, 曹景沛. 生物质平台化合物催化转化制备芳香多元羧酸研究进展[J]. 洁净煤技术, 2024, 30(1): 87-100. |
| Huyan C, Zhang W J, Cao J P. Research progress in catalytic conversion of biomass-based compounds into aromatic polycarboxylic acids[J]. Clean Coal Technology, 2024, 30(1): 87-100. | |
| [8] | Luo F X, Zhou T G, Li X, et al. Fragmentation of structural units of lignin promoted by persulfate through selective C–C cleavage under mild conditions[J]. Organic Chemistry Frontiers, 2015, 2(9): 1066-1070. |
| [9] | Achyuthan K E, Achyuthan A M, Adams P D, et al. Supramolecular self-assembled chaos: polyphenolic lignin's barrier to cost-effective lignocellulosic biofuels[J]. Molecules, 2010, 15(12): 8641-8688. |
| [10] | 吴义湘, 徐莹, 曾旭, 等. 木质素催化转化制备液体燃料的研究进展[J]. 燃料化学学报(中英文), 2025, 53(7): 994-1008. |
| Wu Y X, Xu Y, Zeng X, et al. Research progress in catalytic conversion of lignin to produce liquid fuels[J]. Journal of Fuel Chemistry and Technology, 2025, 53(7): 994-1008. | |
| [11] | Chio C, Sain M, Qin W S. Lignin utilization: a review of lignin depolymerization from various aspects[J]. Renewable and Sustainable Energy Reviews, 2019, 107: 232-249. |
| [12] | Zhang C F, Wang F. Catalytic lignin depolymerization to aromatic chemicals[J]. Accounts of Chemical Research, 2020, 53(2): 470-484. |
| [13] | Sun Z H, Fridrich B, de Santi A, et al. Bright side of lignin depolymerization: toward new platform chemicals[J]. Chemical Reviews, 2018, 118(2): 614-678. |
| [14] | 陈浩楠, 胡晓虹, 马隆龙, 等. 木质素催化氧化过程中典型化学键断键研究[J]. 化工学报, 2023, 74(11): 4367-4382. |
| Chen H N, Hu X H, Ma L L, et al. Study of typical chemical cleavage during catalytic oxidation of lignin[J]. CIESC Journal, 2023, 74(11): 4367-4382. | |
| [15] | Okolie J A, Mukherjee A, Nanda S, et al. Next-generation biofuels and platform biochemicals from lignocellulosic biomass[J]. International Journal of Energy Research, 2021, 45(10): 14145-14169. |
| [16] | 简雅婷, 余强, 陈小燕, 等. 木质素制备生物液体燃料进展[J]. 化工进展, 2021, 40(S2): 109-116. |
| Jian Y T, Yu Q, Chen X Y, et al. Progress in the preparation of liquid biofuels from lignin[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 109-116. | |
| [17] | Ye Y Y, Zhang Y, Fan J, et al. Selective production of 4-ethylphenolics from lignin via mild hydrogenolysis[J]. Bioresource Technology, 2012, 118: 648-651. |
| [18] | Tanwar L, Börgel J, Ritter T. Synthesis of benzylic alcohols by C–H oxidation[J]. Journal of the American Chemical Society, 2019, 141(45): 17983-17988. |
| [19] | Li Z, Pan L, Nie G K, et al. Synthesis of high-performance jet fuel blends from biomass-derived 4-ethylphenol and phenylmethanol[J]. Chemical Engineering Science, 2018, 191: 343-349. |
| [20] | Bai J, Zhang Y, Zhang X H, et al. Synthesis of high-density components of jet fuel from lignin-derived aromatics via alkylation and subsequent hydrodeoxygenation[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(20): 7112-7119. |
| [21] | 周安宁, 白状伟, 贺新福, 等. 木质素催化热解产物高值化调控研究进展[J]. 洁净煤技术, 2025, 31(1): 1-16. |
| Zhou A N, Bai Z W, He X F, et al. Research progress in regulation of lignin catalytic pyrolysis products[J]. Clean Coal Technology, 2025, 31(1): 1-16. | |
| [22] | 张颖, 翟勇祥. 木质素的催化加氢转化[J]. 化工学报, 2017, 68(3): 821-830. |
| Zhang Y, Zhai Y X. Catalytic hydroprocessing of lignin[J]. CIESC Journal, 2017, 68(3): 821-830. | |
| [23] | Yan J, Meng Q L, Shen X J, et al. Selective valorization of lignin to phenol by direct transformation of C(sp2)–C(sp3) and C-O bonds[J]. Science Advances, 2020, 6(45): eabd1951. |
| [24] | Nie G K, Zhang X W, Han P J, et al. Lignin-derived multi-cyclic high density biofuel by alkylation and hydrogenated intramolecular cyclization[J]. Chemical Engineering Science, 2017, 158: 64-69. |
| [25] | Li C Z, Zhao X C, Wang A Q, et al. Catalytic transformation of lignin for the production of chemicals and fuels[J]. Chemical Reviews, 2015, 115(21): 11559-11624. |
| [26] | Yang S C, Shi C X, Shen Z S, et al. Conversion of lignin oil and hemicellulose derivative into high-density jet fuel[J]. Journal of Energy Chemistry, 2023, 77: 452-460. |
| [27] | Shen Z S, Zhang G W, Shi C X, et al. Bifunctional Pt/Hβ catalyzed alkylation and hydrodeoxygenation of phenol and cyclohexanol in one-pot to synthesize high-density fuels[J]. Fuel, 2023, 334: 126634. |
| [28] | Yu R, Shen Z S, Liu Y N, et al. Tandem hydroalkylation and deoxygenation of lignin-derived phenolics to synthesize high-density fuels[J]. Chinese Journal of Chemical Engineering, 2024, 66: 104-109. |
| [29] | Liu Y N, Shi C X, Shen Z S, et al. Continuous liquid-phase alkylation of lignocellulose-derived phenolics and cyclopentanol under large space velocity for efficient synthesis of high-performance biofuel[J]. Chemical Engineering Science, 2024, 285: 119635. |
| [30] | Pino N, Hincapié G, López D. Selective catalytic route for the synthesis of high-density biofuel using biomass-derived compounds[J]. Energy & Fuels, 2018, 32(1): 561-573. |
| [31] | Qiu B B, Shi J C, Hu W, et al. Efficient and selective conversion of xylose to furfural over carbon-based solid acid catalyst in water-γ-valerolactone[J]. Energy, 2024, 294: 130774. |
| [32] | Shen X J, Meng Q L, Mei Q Q, et al. Selective catalytic transformation of lignin with guaiacol as the only liquid product[J]. Chemical Science, 2020, 11(5): 1347-1352. |
| [33] | Ren G Z, Li G Y, Wang A Q, et al. Synthesis of a high-density jet fuel with creosol and formaldehyde[J]. Sustainable Energy & Fuels, 2023, 7(9): 2080-2086. |
| [34] | Midhun Kumar M, Gurrala L, Paek C, et al. Selective production of guaiacol from lignin via catalytic transfer hydrogenolysis using Ru-Cu/Zirconia[J]. Molecular Catalysis, 2022, 530: 112532. |
| [35] | Liu D N, Niu X P, Guo Z, et al. One-pot solvent-free sequential synthesis of high-density polycycloalkanes fuels from lignin-derivatives over laminated NbOPO4 catalyst[J]. Fuel, 2024, 360: 130570. |
| [36] | Mortier J, De Saegher T, Stevens C V, et al. Reductive–oxidative tandem catalysis for lignin depolymerization to benzoquinones and benzaldehydes[J]. ChemSusChem, 2025, 18(24): e202501299. |
| [37] | 陈禹婷, 白宇辰. 木质素氧化解聚制备芳香醛研究进展[J]. 化工进展, 2023, 42(12): 6576-6588. |
| Chen Y T, Bai Y C. Research process of preparation of aromatic aldehyde by oxidative depolymerization of lignin[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6576-6588. | |
| [38] | Tarabanko V E, Tarabanko N. Catalytic oxidation of lignins into the aromatic aldehydes: general process trends and development prospects[J]. International Journal of Molecular Sciences, 2017, 18(11): 2421-2449. |
| [39] | Wang Y L, Liu Y, He J H, et al. Redox-neutral photocatalytic strategy for selective C–C bond cleavage of lignin and lignin models via PCET process[J]. Science Bulletin, 2019, 64(22): 1658-1666. |
| [40] | 张秋云, 杨松, 李虎. 制备生物柴油的固体酸催化剂研究进展[J]. 化工进展, 2013, 32(3): 575-583, 591. |
| Zhang Q Y, Yang S, Li H. Research progress in the preparation of biodiesel with solid acid as the catalyst[J]. Chemical Industry and Engineering Progress 2013, 32(3): 575-583, 591. | |
| [41] | Zhang X J, Han F G, Lin S Z, et al. Synthesis of branched octahydro-indene with methyl benzaldehyde and methyl isobutyl ketone[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(14): 12023-12031. |
| [42] | Alotaibi M A, Kozhevnikova E F, Kozhevnikov I V. Hydrogenation of methyl isobutyl ketone over bifunctional Pt–zeolite catalyst[J]. Journal of Catalysis, 2012, 293: 141-144. |
| [43] | Moteki T, Rowley A T, Flaherty D W. Self-terminated cascade reactions that produce methylbenzaldehydes from ethanol[J]. ACS Catalysis, 2016, 6(11): 7278-7282. |
| [44] | Gong Y, Lin L, Shi J B, et al. Oxidative decarboxylation of levulinic acid by cupric oxides[J]. Molecules, 2010, 15(11): 7946-7960. |
| [45] | Doménech P, Kurisingal Joseph B, Nielsen A T, et al. Optimization of the Pd-catalyzed alkylation of the fermentation-derived oxygenates acetone and butanol toward sustainable aviation fuel (SAF) intermediates[J]. Industrial & Engineering Chemistry Research, 2023, 62(44): 18350-18361. |
| [46] | Zhang S J, Ma H, Sun Y X, et al. Selective tandem hydrogenation and rearrangement of furfural to cyclopentanone over CuNi bimetallic catalyst in water[J]. Chinese Journal of Catalysis, 2021, 42(12): 2216-2224. |
| [47] | Han F G, Xu J Y, Li G Y, et al. Synthesis of renewable aviation fuel additives with aromatic aldehydes and methyl isobutyl ketone under solvent-free conditions[J]. Sustainable Energy & Fuels, 2021, 5(2): 556-563. |
| [48] | Xu J L, Li N, Li G Y, et al. Synthesis of high-density aviation fuels with methyl benzaldehyde and cyclohexanone[J]. Green Chemistry, 2018, 20(16): 3753-3760. |
| [49] | Timothy A A, Han F A, Li G Y, et al. Synthesis of jet fuel range high-density dicycloalkanes with methyl benzaldehyde and acetone[J]. Sustainable Energy & Fuels, 2020, 4(11): 5560-5567. |
| [50] | Wang R, Li G Y, Xu J L, et al. Synthesis of renewable alkylated naphthalenes with benzaldehyde and angelica lactone[J]. Green Chemistry, 2021, 23(15): 5474-5480. |
| [51] | Belguendouz M N E H, Gancedo J, Rapado P, et al. Selective synthesis of γ-valerolactone from levulinic and formic acid over ZnAl mixed oxide[J]. Chemical Engineering Journal, 2021, 414: 128902. |
| [52] | Huang Q, Li Y, Jin X B, et al. Chloride ion enhanced thermal stability of carbon dioxide captured by monoethanolamine in hydroxyl imidazolium based ionic liquids[J]. Energy & Environmental Science, 2011, 4(6): 2125-2133. |
| [53] | Gao H F, Han F G, Li G Y, et al. Synthesis of jet fuel range high-density polycycloalkanes with vanillin and cyclohexanone[J]. Sustainable Energy & Fuels, 2022, 6(6): 1616-1624. |
| [54] | García-Rollán M, Rivas-Márquez M N, Bertran-Llorens S, et al. Biobased vanillin production by oxidative depolymerization of kraft lignin on a nitrogen- and phosphorus-functionalized activated carbon catalyst[J]. Energy & Fuels, 2024, 38(8): 7018-7032. |
| [55] | Wang W, An L, Qian C, et al. Synthesis of renewable high-density fuel with vanillin and cyclopentanone derived from hemicellulose[J]. Molecules, 2023, 28(13): 5029-5041. |
| [56] | Zhang X H, Song M J, Liu J G, et al. Synthesis of high density and low freezing point jet fuels range cycloalkanes with cyclopentanone and lignin-derived vanillins[J]. Journal of Energy Chemistry, 2023, 79: 22-30. |
| [57] | Wang Y Z, Li Z C, Li Q, et al. Tandem reactions for the synthesis of high-density polycyclic biofuels with a double/triple hexane ring[J]. ACS Omega, 2022, 7(23): 19158-19165. |
| [58] | Li Z C, Wang Y Z, Li Q, et al. High tension cyclic hydrocarbons synthesized from biomass-derived platform molecules for aviation fuels in two steps[J]. Green Energy & Environment, 2023, 8(1): 331-337. |
| [59] | Martínez-Zamora L, Ros G, Nieto G. Designing a clean label fish patty with olive, citric, pomegranate, or rosemary extracts[J]. Plants, 2020, 9(5): 659-677. |
| [60] | Birgen C, Dürre P, Preisig H A, et al. Butanol production from lignocellulosic biomass: revisiting fermentation performance indicators with exploratory data analysis[J]. Biotechnology for Biofuels, 2019, 12(1): 167. |
| [61] | Zhang W J, Hu Y C, Tan Y H, et al. Catalytic production of high-energy-density spiro polycyclic jet fuel with biomass derivatives[J]. Journal of Energy Chemistry, 2025, 101: 760-768. |
| [62] | Gao D H, Ouyang D H, Zhao X B. Electro-oxidative depolymerization of lignin for production of value-added chemicals[J]. Green Chemistry, 2022, 24(22): 8585-8605. |
| [63] | Liu C W, Hu Y C, Li G Y, et al. Synthesis of renewable alkylated decalins with p-quinone and 2-methyl-2, 4-pentanediol[J]. Sustainable Energy & Fuels, 2022, 6(3): 834-840. |
| [64] | Luo J W, Yao J, Li H R. The base-catalyzed aerobic oxidation of hydroquinones to benzoquinones under metal-free conditions[J]. Green Chemistry, 2022, 24(8): 3218-3224. |
| [65] | Li C M, Li L Y, Sun L X, et al. Transformation of hydroquinone to benzoquinone mediated by reduced graphene oxide in aqueous solution[J]. Carbon, 2015, 89: 74-81. |
| [66] | Malolan R, Gopinath K P, Vo D N, et al. Green ionic liquids and deep eutectic solvents for desulphurization, denitrification, biomass, biodiesel, bioethanol and hydrogen fuels: a review[J]. Environmental Chemistry Letters, 2021, 19(2): 1001-1023. |
| [67] | Verdía Barbará P, Choudhary H, Nakasu P S, et al. Recent advances in the use of ionic liquids and deep eutectic solvents for lignocellulosic biorefineries and biobased chemical and material production[J]. Chemical Reviews, 2025, 125(12): 5461-5583. |
| [68] | Luo X L, Lu R, Si X Q, et al. Sustainable synthesis of high-density fuel via catalytic cascade cycloaddition reaction[J]. Journal of Energy Chemistry, 2022, 69: 231-236. |
| [69] | Zhang X, Zhang W J, Hu Y C, et al. Catalytic production of fused tetracyclic high-energy-density fuel with biomass-derived cyclopentanone and benzoquinone[J]. Chinese Journal of Catalysis, 2024, 67: 166-175. |
| [70] | Deng Q, Nie G K, Pan L, et al. Highly selective self-condensation of cyclic ketones using MOF-encapsulating phosphotungstic acid for renewable high-density fuel[J]. Green Chemistry, 2015, 17(8): 4473-4481. |
| [71] | Li X L, Jiang H, Hou M M, et al. Enhanced phenol hydrogenation for cyclohexanone production by membrane dispersion[J]. Chemical Engineering Journal, 2020, 386: 120744. |
| [72] | Yu Q, Zhao W, Cui Y R, et al. Direct production of cyclohexanones from lignin via chlorine-mediated catalytic hydroprocessing [J]. Angewandte Chemie International Edition, 2025, 64(39): e202510322. |
| [73] | Xie J J, Zhang X W, Pan L, et al. Renewable high-density spiro-fuels from lignocellulose-derived cyclic ketones[J]. Chemical Communications, 2017, 53(74): 10303-10305. |
| [74] | Lovestead T M, Bruno T J. A comparison of the hypersonic vehicle fuel JP-7 to the rocket propellants RP-1 and RP-2 with the advanced distillation curve method[J]. Energy & Fuels, 2009, 23(7): 3637-3644. |
| [75] | Nie G K, Zhang X W, Pan L, et al. One-pot production of branched decalins as high-density jet fuel from monocyclic alkanes and alcohols[J]. Chemical Engineering Science, 2018, 180: 64-69. |
| [76] | Nakagawa Y, Ishikawa M, Tamura M, et al. Selective production of cyclohexanol and methanol from guaiacol over Ru catalyst combined with MgO[J]. Green Chemistry, 2014, 16(4): 2197-2203. |
| [77] | Guo Q, Hou X L, Xu W, et al. Efficient conversion of furfural to cyclopentanol over lignin activated carbon supported Ni–Co catalyst[J]. RSC Advances, 2022, 12(19): 11843-11852. |
| [78] | Chen M Y, Huang Y B, Pang H, et al. Hydrodeoxygenation of lignin-derived phenols into alkanes over carbon nanotube supported Ru catalysts in biphasic systems[J]. Green Chemistry, 2015, 17(3): 1710-1717. |
| [79] | Kasakov S, Shi H, Camaioni D M, et al. Reductive deconstruction of organosolv lignin catalyzed by zeolite supported nickel nanoparticles[J]. Green Chemistry, 2015, 17(11): 5079-5090. |
| [80] | Wang R, Li G Y, Tang H, et al. Synthesis of decaline-type thermal-stable jet fuel additives with cycloketones[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(20): 17354-17361. |
| [81] | Drago R S, Getty E E. Preparation and catalytic activity of a new solid acid catalyst[J]. Journal of the American Chemical Society, 1988, 110(10): 3311-3312. |
| [82] | Nie G K, Wang H Y, Li Q, et al. Co-conversion of lignocellulosic derivatives to jet fuel blending by an efficient hydrophobic acid resin[J]. Applied Catalysis B: Environmental, 2021, 292: 120181. |
| [83] | Hu J X, Liu X L, Liu Y, et al. Photoinduced transposed Paternò-Büchi reaction for effective synthesis of high-performance jet fuel[J]. Chinese Journal of Chemical Engineering, 2024, 67: 39-48. |
| [84] | Yu Z J, Zou Z F, Wang R, et al. Synthesis of cyclopentadiene and methylcyclopentadiene with xylose or extracted hemicellulose[J]. Angewandte Chemie, 2023, 135(13): e202300008. |
| [85] | He H R, Meyer R J, Rioux R M, et al. Catalyst design for selective hydrogenation of benzene to cyclohexene through density functional theory and microkinetic modeling[J]. ACS Catalysis, 2021, 11(19): 11831-11842. |
| [86] | Yu Y Y, Li Y L, Lou Y H, et al. Tunable transfer-hydrodeoxygenated upgrading of lignin-derived propylphenols to versatile value-added alkane-based chemicals[J]. Advanced Science, 2025, 12(17): 2500687. |
| [87] | Xie J J, Zhang X W, Shi C X, et al. Self-photosensitized [2+2] cycloaddition for synthesis of high-energy-density fuels[J]. Sustainable Energy & Fuels, 2020, 4(2): 911-920. |
| [88] | Xu X B, Meng H, Lu Y Z, et al. Aldol condensation of refluxing acetone on CaC2 achieves efficient coproduction of diacetone alcohol, mesityl oxide and isophorone[J]. RSC Advances, 2018, 8(53): 30610-30615. |
| [1] | 胡国祥, 朱忆魁, 龙华, 刘晓雯, 熊勤钢. 组分配比影响氯化胆碱-乳酸低共熔溶剂碱木质素溶解度的底层机理研究[J]. 化工学报, 2025, 76(9): 4449-4461. |
| [2] | 佟丽丽, 陈英, 艾敏华, 舒玉美, 张香文, 邹吉军, 潘伦. ZnO/WO3异质结光催化环烯烃[2+2]环加成制备高能量密度燃料[J]. 化工学报, 2025, 76(9): 4882-4892. |
| [3] | 李泽权, 蔡天宇, 刘家骏, 陈奇志, 肖沛文, 徐小飞, 赵双良. 木质素基絮凝剂的合成与应用[J]. 化工学报, 2025, 76(9): 4709-4722. |
| [4] | 刘沁雯, 叶恒冰, 张逸伟, 朱法华, 钟文琪. 煤与禽类粪便混合燃料的加压富氧燃烧特性研究[J]. 化工学报, 2025, 76(7): 3487-3497. |
| [5] | 陆昕晟, 郭晓镭, 王世丞, 陆海峰, 刘海峰. 秸秆类生物质的粉碎特性研究[J]. 化工学报, 2025, 76(7): 3539-3551. |
| [6] | 吴天灏, 叶霆威, 林延, 黄振. 生物质化学链气化原位补氢制H2/CO可控合成气[J]. 化工学报, 2025, 76(7): 3498-3508. |
| [7] | 姬海燕, 刘家印, 吴海军, 何璟琳, 靳紫恒, 魏钿航, 江霞. 低温等离子体在生物质气化制氢中的应用研究进展[J]. 化工学报, 2025, 76(6): 2419-2433. |
| [8] | 张畅, 解强, 沙雨桐, 王炳杰, 梁鼎成, 刘金昌. 低灰低硅竹炭的制备及衍生硬炭的电化学性能[J]. 化工学报, 2025, 76(6): 3073-3083. |
| [9] | 石孟琪, 王欢, 王守娟, 席跃宾, 孔凡功. 木质素基炭材料的制备及其在锂硫电池中的研究进展[J]. 化工学报, 2025, 76(4): 1463-1483. |
| [10] | 徐芳, 张锐, 崔达, 王擎. ReaxFF-MD揭示木质素热解反应机制的分子动力学研究[J]. 化工学报, 2025, 76(3): 1253-1263. |
| [11] | 戴文智, 沈雄健, 宋晓博, 杨新乐. 生物质双级蒸发双回热有机朗肯循环系统环境分析[J]. 化工学报, 2025, 76(3): 1230-1242. |
| [12] | 郭琛龙, 彭正奇, 姜冰雪, 吴正凯, 王德良, 王青月, 郑杰元, Ho Lim Khak, 史胜斌, 杨轩, 刘平伟, 王文俊. 退役PET高值回用的研究进展[J]. 化工学报, 2025, 76(2): 532-542. |
| [13] | 常斐, 师人博, 刘士花, 高文倩, 王一飞, 郑镔, 焦怡萱, 蓝兴英, 徐春明, 韩晔华. 石化行业产品生命周期碳足迹评价研究现状及展望[J]. 化工学报, 2025, 76(2): 419-437. |
| [14] | 翟紫航, 蒋杰, 李锦锦, 赵玲, 奚桢浩. 基于2,5-呋喃二甲酸的三元无规共聚酯PBSF的制备与性能[J]. 化工学报, 2025, 76(2): 868-878. |
| [15] | 张雷, 康嘉伟, 李浩然, 洪文鹏. 贫氧预处理对生物炭还原NO的影响机制研究[J]. 化工学报, 2025, 76(12): 6696-6707. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号