CIESC Journal ›› 2019, Vol. 70 ›› Issue (7): 2691-2698.DOI: 10.11949/0438-1157.20181222
• Energy and environmental engineering • Previous Articles Next Articles
Yukun WANG(),Xianren ZHANG(),Dapeng CAO
Received:
2018-10-17
Revised:
2019-04-11
Online:
2019-07-05
Published:
2019-07-05
Contact:
Xianren ZHANG
通讯作者:
张现仁
作者简介:
王昱焜(1993—),男,硕士研究生,<email>wyk1211@qq.com</email>
基金资助:
CLC Number:
Yukun WANG, Xianren ZHANG, Dapeng CAO. Study on hygroscopic properties of atmospheric aerosols using κ-Köhler theory[J]. CIESC Journal, 2019, 70(7): 2691-2698.
王昱焜, 张现仁, 曹达鹏. 利用κ-Köhler理论研究大气气溶胶的吸湿特性[J]. 化工学报, 2019, 70(7): 2691-2698.
有机物 | 密度/(g/cm3) | 质量分数 | 体积分数 | κi | κorg |
---|---|---|---|---|---|
环戊烯 | 0.77 | 0.47 | 0.61 | 0.12 | 0.156 |
甲苯 | 0.87 | 0.30 | 0.35 | 0.10① | |
丙二酸 | 1.62 | 0.23 | 0.14 | 0.34 |
Table 1 Calculation of κorg of organic compounds
有机物 | 密度/(g/cm3) | 质量分数 | 体积分数 | κi | κorg |
---|---|---|---|---|---|
环戊烯 | 0.77 | 0.47 | 0.61 | 0.12 | 0.156 |
甲苯 | 0.87 | 0.30 | 0.35 | 0.10① | |
丙二酸 | 1.62 | 0.23 | 0.14 | 0.34 |
物质 | 密度/(g/cm3) | 质量分数 | 体积分数 | κi | κall |
---|---|---|---|---|---|
(NH4)2SO4 | 1.77 | 0.171 | 0.160 | 0.60 | 0.388 |
NH4NO3 | 1.72 | 0.247 | 0.239 | 0.57 | |
NH4Cl | 1.53 | 0.034 | 0.037 | 1.20 | |
有机物 | 0.91 | 0.548 | 0.564 | 0.156 |
Table 2 Calculation of κall of aerosol during clean period in Beijing
物质 | 密度/(g/cm3) | 质量分数 | 体积分数 | κi | κall |
---|---|---|---|---|---|
(NH4)2SO4 | 1.77 | 0.171 | 0.160 | 0.60 | 0.388 |
NH4NO3 | 1.72 | 0.247 | 0.239 | 0.57 | |
NH4Cl | 1.53 | 0.034 | 0.037 | 1.20 | |
有机物 | 0.91 | 0.548 | 0.564 | 0.156 |
1 | RavishankaraA R. Heterogeneous and multiphase chemistry in the troposphere[J]. Science, 1997, 276(5315): 1058-1065. |
2 | SeinfeldJ H, PandisS N. Atmospheric Chemistry and Physics: from Air Pollution to Climate Change[M]. New York: John Wiley & Sons, 2016. |
3 | CruzC N, PandisS N. A study of the ability of pure secondary organic aerosol to act as cloud condensation nuclei[J]. Atmospheric Environment, 1997, 31(15): 2205-2214. |
4 | RaymondT M, PandisS N. Cloud activation of single‐component organic aerosol particles[J]. Journal of Geophysical Research: Atmospheres, 2002,107(D24): AAC 16-1-AAC 16-8. |
5 | DinarE, TaraniukI, GraberE R, et al. Cloud condensation nuclei properties of model and atmospheric HULIS[J]. Atmospheric Chemistry and Physics, 2006, 6(9): 2465-2482. |
6 | HämeriK, LaaksonenA, VäkeväM, et al. Hygroscopic growth of ultrafine sodium chloride particles[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D18): 20749-20757. |
7 | HuD, QiaoL, ChenJ, et al. Hygroscopicity of inorganic aerosols: size and relative humidity effects on the growth factor[J]. Aerosol and Air Quality Research, 2010, 10: 255-264. |
8 | WeingartnerE, GyselM, BaltenspergerU. Hygroscopicity of aerosol particles at low temperatures(Ⅰ): New low-temperature H-TDMA instrument: setup and first applications[J]. Environmental Science and Technology, 2002, 36(1): 55-62. |
9 | TangI N, MunkelwitzH R. Composition and temperature dependence of the deliquescence properties of hygroscopic aerosols[J]. Atmospheric Environment. Part A. General Topics, 1993, 27(4): 467-473. |
10 | SchlenkerJ C, MalinowskiA, MartinS T, et al. Crystals formed at 293 K by aqueous sulfate- nitrate- ammonium- proton aerosol particles[J]. The Journal of Physical Chemistry A, 2004, 108(43): 9375-9383. |
11 | CruzC N, PandisS N. Deliquescence and hygroscopic growth of mixed inorganic- organic atmospheric aerosol[J]. Environmental Science and Technology, 2000, 34(20): 4313-4319. |
12 | SvenningssonB, RisslerJ, SwietlickiE, et al. Hygroscopic growth and critical supersaturations for mixed aerosol particles of inorganic and organic compounds of atmospheric relevance[J]. Atmospheric Chemistry and Physics, 2006, 6(7): 1937-1952. |
13 | PengC, ChanM N, ChanC K. The hygroscopic properties of dicarboxylic and multifunctional acids: measurements and UNIFAC predictions[J]. Environmental Science and Technology, 2001, 35(22): 4495-4501. |
14 | ChoiM Y, ChanC K. The effects of organic species on the hygroscopic behaviors of inorganic aerosols[J]. Environmental Science and Technology, 2002, 36(11): 2422-2428. |
15 | KöhlerH. The nucleus in and the growth of hygroscopic droplets[J]. Transactions of the Faraday Society, 1936, 32: 1152-1161. |
16 | PettersM D, KreidenweisS M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity[J]. Atmospheric Chemistry and Physics, 2007, 7(8): 1961-1971. |
17 | ChangR Y W, SlowikJ G, ShantzN C, et al. The hygroscopicity parameter (κ) of ambient organic aerosol at a field site subject to biogenic and anthropogenic influences: relationship to degree of aerosol oxidation[J]. Atmospheric Chemistry and Physics, 2010, 10(11): 5047-5064. |
18 | FitzgeraldJ W. Approximation formulas for the equilibrium size of an aerosol particle as a function of its dry size and composition and the ambient relative humidity[J]. Journal of Applied Meteorology, 1975, 14(6): 1044-1049. |
19 | YueD L, HuM, ZhangR Y, et al. Potential contribution of new particle formation to cloud condensation nuclei in Beijing[J]. Atmospheric Environment, 2011, 45(33): 6070-6077. |
20 | HongJ, HäkkinenS A K, ParamonovM, et al. Hygroscopicity, CCN and volatility properties of submicron atmospheric aerosol in a boreal forest environment during the summer of 2010[J]. Atmospheric Chemistry and Physics, 2014, 14(9): 4733-4748. |
21 | JacobsonM C, HanssonH C, NooneK J, et al. Organic atmospheric aerosols: review and state of the science[J]. Reviews of Geophysics, 2000, 38(2): 267-294. |
22 | SaxenaP, HildemannL M. Water-soluble organics in atmospheric particles: a critical review of the literature and application of thermodynamics to identify candidate compounds[J]. Journal of Atmospheric Chemistry, 1996, 24(1): 57-109. |
23 | 吴萍, 丁一汇, 柳艳菊, 等. 中国中东部冬季霾日的形成与东亚冬季风和大气湿度的关系[J]. 气象学报, 2016, 74(3): 352-366. |
WuP, DingY H, LiuY J, et al. Influence of the East Asian winter monsoon and atmospheric humidity on the wintertime haze frequency over central-eastern China[J]. Acta Meteorologica Sinica, 2016, 74(3): 352-366. | |
24 | HuD, ChenJ, YeX, et al. Hygroscopicity and evaporation of ammonium chloride and ammonium nitrate: relative humidity and size effects on the growth factor[J]. Atmospheric Environment, 2011, 45(14): 2349-2355. |
25 | AndreaeM O, RosenfeldD. Aerosol–cloud–precipitation interactions(Ⅰ): The nature and sources of cloud-active aerosols[J]. Earth-Science Reviews, 2008, 89(1/2): 13-41. |
26 | VarutbangkulV, BrechtelF J, BahreiniR, et al. Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds[J]. Atmospheric Chemistry and Physics, 2006, 6(9): 2367-2388. |
27 | MontgomeryJ F, RogakS N, GreenS I, et al. Structural change of aerosol particle aggregates with exposure to elevated relative humidity[J]. Environmental Science and Technology, 2015, 49(20): 12054-12061. |
28 | EstilloreA D, HettiyaduraA P S, QinZ, et al. Water uptake and hygroscopic growth of organosulfate aerosol[J]. Environmental Science and Technology, 2016, 50(8): 4259-4268. |
29 | SchillG P, De HaanD O, TolbertM A. Heterogeneous ice nucleation on simulated secondary organic aerosol[J]. Environmental Science and Technology, 2014, 48(3): 1675-1682. |
30 | WangG, ZhangR, GomezM E, et al. Persistent sulfate formation from London Fog to Chinese haze[J]. Proceedings of the National Academy of Sciences, 2016, 113(48): 13630-13635. |
31 | 邓雪娇, 王新明, 赵春生, 等. 珠江三角洲典型过程VOCs的平均浓度与化学反应活性[J]. 中国环境科学, 2010, 30(9): 1153-1161. |
DengX J, WangX M, ZhaoC S, et al. The mean concentration and chemical reactivity of VOCs of typical processes over Pearl River Delta Region[J]. China Environmental Science, 2010, 30(9): 1153-1161. | |
32 | PrenniA J, PettersM D, KreidenweisS M, et al. Cloud droplet activation of secondary organic aerosol[J]. Journal of Geophysical Research, 2007, 112(D10): D10223. |
[1] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[2] | Chongda DUAN, Xiaowei YAO, Jiahua ZHU, Jing SUN, Nan HU, Guangyue LI. Effects of environmental factors on calcium carbonate precipitation induced by Klebsiella aerogenes [J]. CIESC Journal, 2023, 74(8): 3543-3553. |
[3] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[4] | Ruiheng WANG, Pinjing HE, Fan LYU, Hua ZHANG. Parameter comparison and optimization of three solid-liquid separation methods for washed air pollution control residues from municipal solid waste incinerators [J]. CIESC Journal, 2023, 74(4): 1712-1723. |
[5] | Xiangning HU, Yuanbo YIN, Chen YUAN, Yun SHI, Cuiwei LIU, Qihui HU, Wen YANG, Yuxing LI. Experimental study on visualization of refined oil migration in soil [J]. CIESC Journal, 2023, 74(4): 1827-1835. |
[6] | Lingxin ZU, Rongting HU, Xin LI, Yudao CHEN, Guanglin CHEN. Carbon release products and denitrification bioavailability from chemical components of woody biomass [J]. CIESC Journal, 2023, 74(3): 1332-1342. |
[7] | Dingping LIU, Aihua CHEN, Xiangyang ZHANG, Wenhao HE, Hai WANG. Study on semi dry hydrolytic denitrification of aluminum ash [J]. CIESC Journal, 2023, 74(3): 1294-1302. |
[8] | Yin XU, Jie CAI, Lu CHEN, Yu PENG, Fuzhen LIU, Hui ZHANG. Advances in heterogeneous visible light photocatalysis coupled with persulfate activation for water pollution control [J]. CIESC Journal, 2023, 74(3): 995-1009. |
[9] | Ruizhe CHEN, Leilei CHENG, Jing GU, Haoran YUAN, Yong CHEN. Research progress in chemical recovery technology of fiber-reinforced polymer composites [J]. CIESC Journal, 2023, 74(3): 981-994. |
[10] | Tanjie ZHA, Han YANG, Hejie QIN, Xiaohong GUAN. The construction of biomimetic materials and their research progress in the field of aquatic environmental chemistry [J]. CIESC Journal, 2023, 74(2): 585-598. |
[11] | Wangxin GE, Yihua ZHU, Hongliang JIANG, Chunzhong LI. Research progress on electrolytes for carbon dioxide electroreduction [J]. CIESC Journal, 2022, 73(8): 3433-3447. |
[12] | Shipei XU, Chao WANG, Qingyuan LI, Bingkang ZHANG, Shiwei XU, Xueqin ZHANG, Shiying WANG, Mengxiao CONG. Study on influence of CaO during thermal desorption products of oil-based drilling cuttings [J]. CIESC Journal, 2022, 73(4): 1724-1731. |
[13] | Yiwei ZHANG, Hairong TANG, Yong HE, Yanqun ZHU, Zhihua WANG. Experimental study of nitrogen balance in the process of flue gas denitration by ozone low-temperature oxidation [J]. CIESC Journal, 2022, 73(4): 1732-1742. |
[14] | Qi WANG, Kuo FANG, Conghui HE, Kaijun WANG. Recent development and future challenges of flow-electrode capacitive deionization [J]. CIESC Journal, 2022, 73(3): 975-989. |
[15] | Wei SONG, Wanjia LI, Shurong YU, Rongrong MA. Effect of thermal mechanical coupling on fretting wear behavior of TC4 alloy [J]. CIESC Journal, 2022, 73(3): 1324-1334. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 701
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 444
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||