CIESC Journal ›› 2019, Vol. 70 ›› Issue (12): 4625-4634.DOI: 10.11949/0438-1157.20190395
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Zhimiao WANG1,2(),Hongqi ZHANG1,Lichao ZHOU1,Fang LI1,2,Wei XUE1,2(),Yanji WANG1,2()
Received:
2019-04-16
Revised:
2019-08-23
Online:
2019-12-05
Published:
2019-12-05
Contact:
Wei XUE,Yanji WANG
王志苗1,2(),张洪起1,周立超1,李芳1,2,薛伟1,2(),王延吉1,2()
通讯作者:
薛伟,王延吉
作者简介:
王志苗(1985—),女,硕士,实验师,基金资助:
CLC Number:
Zhimiao WANG, Hongqi ZHANG, Lichao ZHOU, Fang LI, Wei XUE, Yanji WANG. Role of Ce in supported Pd catalyst for oxidative carbonylation of phenol to diphenyl carbonate[J]. CIESC Journal, 2019, 70(12): 4625-4634.
王志苗, 张洪起, 周立超, 李芳, 薛伟, 王延吉. Ce在负载Pd催化苯酚氧化羰基化合成碳酸二苯酯反应中的作用[J]. 化工学报, 2019, 70(12): 4625-4634.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 Catalytic performance of Pd-M-O/SiO2 for oxidative carbonylation of phenol(reaction conditions: 100℃, 6.6 MPa, CO/O2=10/1, others were listed in Section 1.4)
Fig.2 Effect of Ce/Pd molar ratio on oxidative carbonylation of phenol over Pd-Ce-O/SiO2(reaction conditions: 100℃, 6.6 MPa, CO/O2=10/1, others were listed in Section 1.4)
Pd-Ce-O/SiO2催化剂中Ce/Pd摩尔比 | PdO(101)晶面间距 / nm | 晶格参数 / nm | ||
---|---|---|---|---|
a | b | c | ||
不加Ce | 0.26032 | 0.30330 | 0.30330 | 0.53849 |
1∶1 | 0.26283 | 0.30413 | 0.30413 | 0.53347 |
2∶1 | 0.26360 | 0.30392 | 0.30392 | 0.53595 |
5∶1 | 0.26404 | 0.30423 | 0.30423 | 0.53322 |
10∶1 | 0.26572 | 0.30398 | 0.30398 | 0.54006 |
Table 1 Interplanar spacing and lattice parameters of PdO(101) in Pd-Ce-O/SiO2 catalyst with different Ce/Pd molar ratio
Pd-Ce-O/SiO2催化剂中Ce/Pd摩尔比 | PdO(101)晶面间距 / nm | 晶格参数 / nm | ||
---|---|---|---|---|
a | b | c | ||
不加Ce | 0.26032 | 0.30330 | 0.30330 | 0.53849 |
1∶1 | 0.26283 | 0.30413 | 0.30413 | 0.53347 |
2∶1 | 0.26360 | 0.30392 | 0.30392 | 0.53595 |
5∶1 | 0.26404 | 0.30423 | 0.30423 | 0.53322 |
10∶1 | 0.26572 | 0.30398 | 0.30398 | 0.54006 |
催化剂 | Pd 含量/% (质量) | 比表 面积/(m2/g) | 催化反应性能② | ||
---|---|---|---|---|---|
XPS | 理论含量 | 苯酚转化率/% | DPC选择性/% | ||
Pd-O/CeO2 | 0.58 | 1.0 | 14.5 | 24.0 | 23.3 |
Pd-O/SiO2 | 0.90 | 1.0 | 37.1 | 38.4 | 85.4 |
Pd-Ce-O/SiO2① | 0.74 | 1.0 | 49.6 | 64.4 | 83.4 |
Table 2 Physicochemical properties of Pd-based catalysts and their catalytic performance for oxidative carbonylation of phenol
催化剂 | Pd 含量/% (质量) | 比表 面积/(m2/g) | 催化反应性能② | ||
---|---|---|---|---|---|
XPS | 理论含量 | 苯酚转化率/% | DPC选择性/% | ||
Pd-O/CeO2 | 0.58 | 1.0 | 14.5 | 24.0 | 23.3 |
Pd-O/SiO2 | 0.90 | 1.0 | 37.1 | 38.4 | 85.4 |
Pd-Ce-O/SiO2① | 0.74 | 1.0 | 49.6 | 64.4 | 83.4 |
1 | 崔小明. 国内外聚碳酸酯的供需现状及发展前景分析[J]. 石油化工技术与经济, 2017, 33(1): 18-23. |
Cui X M. Supply and demand status of polycarbonate at home and abroad and its development prospect analysis[J]. Technology & Economics in Petrochemicals, 2017, 33(1): 18-23. | |
2 | Gong J L, Ma X B, Wang S P. Phosgene-free approaches to catalytic synthesis of diphenyl carbonate and its intermediates[J]. Applied Catalysis A: General, 2007, 316: 1. |
3 | Figueiredo M C, Trieu V, Eiden S, et al. Spectroscopic investigation of the electrosynthesis of diphenyl carbonate from CO and phenol on gold electrodes[J]. ACS Catalysis, 2018, 8(4): 3087-3090. |
4 | 王延吉, 赵新强. 绿色催化过程与工艺[M]. 2版. 北京: 化学工业出版社, 2015. |
Wang Y J, Zhao X Q. Green Catalytic Process and Technology [M]. 2nd ed. Beijing: Chemical Industry Press, 2015. | |
5 | 付嫱, 欧阳春, 曾毅, 等. 甲基苯基碳酸酯歧化反应研究进展[J]. 化工进展, 2017, 36(8): 2748-2755. |
Fu Q, Ouyang C, Zeng Y, et al. Progresses in the research on disproportionation of methyl phenyl carbonate[J]. Chemical Industry and Engineering Progress, 2017, 36(8): 2748-2755. | |
6 | Tang R Z, Chen T, Chen Y, et al. Core-shell TiO2@SiO2 catalyst for transesterification of dimethyl carbonate and phenol to diphenyl carbonate[J]. Chinese Journal of Catalysis, 2014, 35(4): 457-461. |
7 | Yang X, Ma X B, Wang S P, et al. Transesterification of dimethyl oxalate with phenol over TiO2/SiO2: catalyst screening and reaction optimization[J]. AIChE Journal, 2008, 54(12): 3260-3272. |
8 | Yin X, Zeng Y, Yao J, et al. Kinetic modeling of the transesterification reaction of dimethyl carbonate and phenol in the reactive distillation reactor[J]. Industrial & Engineering Chemistry Research, 2014, 53(49): 19087-19093. |
9 | 薛伟, 张敬畅, 王延吉, 等. 新型超细包覆型催化剂的制备及催化苯酚氧化羰基化合成碳酸二苯酯[J]. 化工学报, 2004, 55(12): 2076-2081. |
Xue W, Zhang J C, Wang Y J, et al. Preparation of novel ultrafine embedded catalyst for oxidative carbonylation of phenol to diphenyl carbonate[J]. Journal of Chemical Industry and Engineering (China), 2004, 55(12): 2076-2081. | |
10 | Lu W, Du Z P, Yuan H, et al. Synthesis of diphenyl carbonate over the magnetic catalysts Pd/La1-xPbxMnO3 (x= 0.2—0.7) [J]. Chinese Journal of Chemical Engineering, 2013, 21: 8-13. |
11 | Ronchin L, Vavasori A, Amadio E, et al. Oxidative carbonylation of phenols catalyzed by homogeneous and heterogeneous Pd precursors[J]. Journal of Molecular Catalysis A: Chemical, 2009, 298: 23-30. |
12 | Yang X J, Han J Y, Du Z P, et al. Effects of Pb dopant on structure and activity of Pd/K-OMS-2 catalysts for heterogeneous oxidative carbonylation of phenol[J]. Catalysis Communications, 2010, 11: 643-646. |
13 | Zhang Y L, Xiang S L, Wang G Q, et al. Preparation and application of coconut shell activated carbon immobilized palladium complexes[J]. Catalysis Science & Technology, 2014, 4: 1055-1063. |
14 | Yin C F, Zhou J, Chen Q M, et al. Deactivation causes of supported palladium catalysts for the oxidative carbonylation of phenol[J]. Journal of Molecular Catalysis A: Chemical, 2016, 424: 377-383. |
15 | Vavasori A, Toniolo L. Multistep electron-transfer catalytic system for the oxidative carbonylation of phenol to diphenyl carbonate[J]. Journal of Molecular Catalysis A: Chem., 1998, 139(2/3): 109-119. |
16 | Xue W, Zhang J C, Wang Y J, et al. Effect of promoter copper on the oxidative carbonylation of phenol over the ultrafine embedded catalyst Pd-Cu-O/SiO2[J]. Journal of Molecular Catalysis A: Chemical, 2005, 232(1/2): 77-81. |
17 | Liang Y H, Guo H X, Chen H P, et al. Effect of doping cerium in the support of catalyst Pd-Co/Cu-Co-Mn mixed oxides on the oxidative carbonylation of phenol[J]. Chinese Journal of Chemical Engineering, 2009, 17(3): 401-406. |
18 | 张光旭, 吴元欣, 马沛生, 等. 非均相催化一步合成碳酸二苯酯 (Ⅸ): Ce的添加方法对Pd-Sn催化剂性能的影响[J]. 化工学报, 2005, 56(1): 82-87. |
Zhang G X, Wu Y X, Ma P S, et al. Direct synthesis of diphenyl carbonate with heterogeneous catalysis reaction(Ⅸ): Effect of Ce loading methods on catalytic activity of catalyst[J]. Journal of Chemical Industry and Engineering (China), 2005, 56(1): 82-87. | |
19 | Yang X J, Yin C F, Han J Y, et al. Effect of oxygen species on the liquid product distribution in the oxidative carbonylation of phenol over Pd/M-OMS-2 catalysts[J]. Reac. Kinet. Mech. Cat., 2016, 117: 269-281. |
20 | Spezzati G, Su Y Q, Hofmann J P, et al. Atomically dispersed Pd-O species on CeO2(111) as highly active sites for low-temperature CO oxidation[J]. ACS Catalysis, 2017, 7: 6887-6891. |
21 | 刘逸锋, 沈本贤, 皮志鹏, 等. CeO2表面氧化转移FCC烟气中SO2的反应过程[J]. 化工学报, 2016, 67(12): 5015-5023. |
Liu Y F, Shen B X, Pi Z P, et al. Oxidation transferring mechanism of SO2 in FCC flue gas over CeO2 surface[J]. CIESC Journal, 2016, 67(12): 5015-5023. | |
22 | 袁烨, 王志苗, 安华良, 等. Pd-O/CeO2纳米管催化苯酚氧化羰基化反应[J]. 催化学报, 2015, 36(7): 1142-1152. |
Yuan Y, Wang Z M, An H L, et al. Oxidative carbonylation of phenol with a Pd-O/CeO2-nanotube catalyst[J]. Chinese Journal of Catalysis, 2015, 36(7): 1142-1152. | |
23 | Luo J Y, Meng M, Xian H, et al. The nanomorphology-controlled palladium-support interaction and the catalytic performance of Pd/CeO2 catalysts[J]. Catalysis Letters, 2009, 133: 328-333. |
24 | Brun M, Berthet A, Bertolini J C. XPS, AES and Auger parameter of Pd and PdO[J]. Journal of Electron Spectroscopy and Related Phenomena, 1999, 104: 55-60. |
25 | Wu G W, Wu Y X, Ma P S, et al. Direct synthesis of diphenyl carbonate over heterogeneous catalyst: effects of structure of substituted perovskite carrier on the catalyst activities[J]. Frontiers of Chemical Science and Engineering in China, 2007, 1(1): 59-64. |
26 | 张珍容, 张世英, 万隆, 等. Pd/Ce-HMS介孔材料的结构和表面化学态[J]. 化工学报, 2007, 58(3): 776-780. |
Zhang Z R, Zhang S Y, Wan L, et al. Structure and surface chemical state of Pd/Ce containing hexagonal mesoporous silicas[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(3): 776-780. | |
27 | Guimaraes A L, Dieguez D C, Schmal M. The effect of precursors salts on surface state of Pd/Al2O3 and Pd/CeO2/Al2O3 catalysts[J]. Annals of the Brazilian Academy of Sciences, 2004, 76(4): 825-832. |
28 | Luo M F, Hou Z Y, Yuan X X, et al. Characterization study of CeO2 supported Pd catalyst for low temperature carbon monoxide oxidation[J]. Catalysis Letters, 1998, 50(3/4): 205-209. |
29 | Sanchez M G, Gazquez J L. Oxygen vacancy model in strong metal-support interaction[J]. Journal of Catalysis, 1987, 104(1): 120-135. |
30 | 杨成, 任杰, 孙予罕. CeO2和La2O3改性Pd/r-Al2O3甲醇低温分解催化剂的研究(Ⅰ): CeO2改性Pd/γ-Al2O3催化剂的结构和性能[J]. 催化学报, 2001, 22(3): 283-286. |
Yang C, Ren J, Sun Y H. Study of CeO2- and La2O3-Modified Pd/γ-Al2O3 catalyst for methanol decomposition at low temperature(Ⅰ): Structure and properties of CeO2-modified Pd/γ-Al2O3 catalyst[J]. Chinese Journal of Catalysis, 2001, 22(3): 283-286. | |
31 | Zhu H Q, Qin Z F, Shan W J, et al. Pd/CeO2-TiO2 catalyst for CO oxidation at low temperature: a TPR study with H2 and CO as reducing agents[J]. Journal of Catalysis, 2004, 225(2): 267-277. |
32 | Cargnello M, Doan-Nguyen V V T, Gordon T R, et al. Control of metal nanocrystal size reveal metal-support interface role for ceria catalysts[J]. Science, 2013, 341(6147): 771-773. |
33 | Boronin A I, Slavinskaya E M, Danilova I G, et al. Investigation of palladium interaction with cerium oxide and its state in catalysts for low-temperature CO oxidation[J]. Catalysis Today, 2009, 144: 201-211. |
34 | Wang Z, Qu Z P, Quan X, et al. Selective catalytic oxidation of ammonia to nitrogen over CuO-CeO2 mixedoxides prepared by surfactant-templated method[J]. Applied Catalysis B: Environmental, 2013, 134: 153-166. |
[1] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[2] | Yihao ZHANG, Zhenlei WANG. Fault detection using grouped support vector data description based on maximum information coefficient [J]. CIESC Journal, 2023, 74(9): 3865-3878. |
[3] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[4] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[5] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[6] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[7] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[8] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[9] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[10] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[11] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[12] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
[13] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[14] | Chen WANG, Xiufeng SHI, Xianfeng WU, Fangjia WEI, Haohong ZHANG, Yin CHE, Xu WU. Preparation of Mn3O4 catalyst by redox method and study on its catalytic oxidation performance and mechanism of toluene [J]. CIESC Journal, 2023, 74(6): 2447-2457. |
[15] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||