CIESC Journal ›› 2019, Vol. 70 ›› Issue (S2): 250-257.DOI: 10.11949/0438-1157.20190498
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Fei DONG(),Tianlin YUAN,Zhiwei WU,Jie NI
Received:
2019-05-13
Revised:
2019-05-23
Online:
2019-09-06
Published:
2019-09-06
Contact:
Fei DONG
通讯作者:
董非
作者简介:
董非(1982—),男,博士,副教授,基金资助:
CLC Number:
Fei DONG, Tianlin YUAN, Zhiwei WU, Jie NI. Numerical study of engine water jackets using RPI model[J]. CIESC Journal, 2019, 70(S2): 250-257.
董非, 苑天林, 武志伟, 倪捷. 基于RPI模型的内燃机冷却水腔内数值模拟研究[J]. 化工学报, 2019, 70(S2): 250-257.
Add to citation manager EndNote|Ris|BibTeX
工作压力p/MPa | 入口流速Vinlet /(m/s) | 加热壁面温度Tw/℃ |
---|---|---|
0.1/0.2/0.3 | 0.25/1 | 90 |
100 | ||
108 110 | ||
120 | ||
128 | ||
135 | ||
142 | ||
150 | ||
160 |
Table 1 Parameter value under calculation conditions
工作压力p/MPa | 入口流速Vinlet /(m/s) | 加热壁面温度Tw/℃ |
---|---|---|
0.1/0.2/0.3 | 0.25/1 | 90 |
100 | ||
108 110 | ||
120 | ||
128 | ||
135 | ||
142 | ||
150 | ||
160 |
参数 | 数值 |
---|---|
柴油机型式 | 直列、增压、水冷、直喷式 |
汽缸直径/mm | 95 |
活塞行程/mm | 115 |
压缩比 | 18 |
总排量/L | 3.26 |
额定功率/kW | 72 |
标定转速/(r/min) | 2600 |
Table 2 Main technical parameters of diesel engine
参数 | 数值 |
---|---|
柴油机型式 | 直列、增压、水冷、直喷式 |
汽缸直径/mm | 95 |
活塞行程/mm | 115 |
压缩比 | 18 |
总排量/L | 3.26 |
额定功率/kW | 72 |
标定转速/(r/min) | 2600 |
位置 | 平均环境温度/K | 平均传热系数/(W/(m2·K)) |
---|---|---|
火力面 | 1048 | 1100 |
进气道 | 335 | 250 |
排气道 | 795 | 350 |
缸盖外壁面 | 310 | 20 |
水腔壁面 | Interface实时 数据交换 | Interface实时 数据交换 |
Table 3 Cylinder head boundary conditions
位置 | 平均环境温度/K | 平均传热系数/(W/(m2·K)) |
---|---|---|
火力面 | 1048 | 1100 |
进气道 | 335 | 250 |
排气道 | 795 | 350 |
缸盖外壁面 | 310 | 20 |
水腔壁面 | Interface实时 数据交换 | Interface实时 数据交换 |
测点位置 | 测量 温度/K | 仿真温度/K | 相对误差/% | ||
---|---|---|---|---|---|
RPI | 纯对流 | RPI | 纯对流 | ||
1 | 259 | 256 | 234 | 1.16 | 9.65 |
2 | 282 | 283 | 259 | 0.35 | 8.16 |
3 | 273 | 270 | 259 | 1.1 | 5.13 |
4 | 278 | 291 | 271 | 4.68 | 2.52 |
5 | 289 | 286 | 272 | 1.04 | 5.88 |
6 | 266 | 284 | 259 | 6.77 | 2.63 |
7 | 270 | 291 | 271 | 7.78 | 0.37 |
8 | 288 | 292 | 272 | 1.39 | 5.56 |
9 | 282 | 284 | 258 | 0.71 | 8.51 |
10 | 281 | 285 | 273 | 1.42 | 2.85 |
11 | 273 | 258 | 242 | 5.49 | 11.36 |
12 | 274 | 286 | 261 | 4.38 | 4.74 |
13 | 267 | 271 | 263 | 1.5 | 1.5 |
14 | 307 | 288 | 279 | 6.19 | 9.12 |
15 | 298 | 296 | 274 | 0.67 | 8.05 |
16 | 248 | 262 | 243 | 5.65 | 2.02 |
17 | 269 | 286 | 264 | 6.32 | 1.86 |
18 | 276 | 293 | 275 | 6.16 | 0.36 |
19 | 301 | 293 | 274 | 2.66 | 8.97 |
20 | -241 | 284 | 259 | 17.84 | 7.47 |
Table 4 Comparisons between measured and simulated values of cylinder head temperature under calibration conditions
测点位置 | 测量 温度/K | 仿真温度/K | 相对误差/% | ||
---|---|---|---|---|---|
RPI | 纯对流 | RPI | 纯对流 | ||
1 | 259 | 256 | 234 | 1.16 | 9.65 |
2 | 282 | 283 | 259 | 0.35 | 8.16 |
3 | 273 | 270 | 259 | 1.1 | 5.13 |
4 | 278 | 291 | 271 | 4.68 | 2.52 |
5 | 289 | 286 | 272 | 1.04 | 5.88 |
6 | 266 | 284 | 259 | 6.77 | 2.63 |
7 | 270 | 291 | 271 | 7.78 | 0.37 |
8 | 288 | 292 | 272 | 1.39 | 5.56 |
9 | 282 | 284 | 258 | 0.71 | 8.51 |
10 | 281 | 285 | 273 | 1.42 | 2.85 |
11 | 273 | 258 | 242 | 5.49 | 11.36 |
12 | 274 | 286 | 261 | 4.38 | 4.74 |
13 | 267 | 271 | 263 | 1.5 | 1.5 |
14 | 307 | 288 | 279 | 6.19 | 9.12 |
15 | 298 | 296 | 274 | 0.67 | 8.05 |
16 | 248 | 262 | 243 | 5.65 | 2.02 |
17 | 269 | 286 | 264 | 6.32 | 1.86 |
18 | 276 | 293 | 275 | 6.16 | 0.36 |
19 | 301 | 293 | 274 | 2.66 | 8.97 |
20 | -241 | 284 | 259 | 17.84 | 7.47 |
1 | 白敏丽, 吕继组, 丁铁新. 六缸柴油机冷却系统流动与传热的数值模拟研究[J]. 内燃机学报, 2004, 22(6): 525-531. |
BaiM L, LyuJ Z, DingT X. Numerical simulation on flow and heat transfer of cooling system in a six-cylinder diesel engine [J].Transactions of CSICE, 2004, 22(6): 525-531. | |
2 | AguilarJ M A, ArroyoR L, CruzJ M. Study of the thermal-structural behavior of a piston diesel with gallery through finite element method[C]// ASME 2012 International Mechanical Engineering Congress and Exposition American Society of Mechanical Engineers. 2012: 759-767. |
3 | 花仕洋, 黄荣华, 贾李水, 等. 大功率天然气发动机气缸盖热状态试验研究[J]. 内燃机工程, 2015, 36(5): 102-108. |
HuaS Y, HuangR H, JiaL S, et al. Experimental study on thermal condition of cylinder head of a high-power natural gas engine[J]. Internal Combustion Engine Engineering, 2015, 36(5): 102-108. | |
4 | SetoodehH, KeshavarzA, GhasemianA, et al. Subcooled flow boiling of ethylene–glycol/water mixture in an inclined channel with a hot spot: an experimental study[J]. International Communications in Heat and Mass Transfer, 2016, 78: 285-294. |
5 | LiG X, FuS, LiuY, et al. A homogeneous flow model for boiling heat transfer calculation based on single phase flow[J]. Energy Conversion & Management, 2009, 50(7): 1862-1868. |
6 | PržuljV, ShalaM. Multi-phase mixture modelling of nucleate boiling applied to engine coolant flows[C]// Computational Methods in Multiphase Flow V. WIT Transactions on Engineering Sciences, 2009, 63: 135-146. |
7 | 刘晓日, 黎明, 郑清平, 等. 考虑沸腾和缸内局部传热的缸盖流固耦合传热分析[J]. 内燃机工程, 2017, 38(6): 139-144. |
LiuX R, LiM, ZhengQ P, et al. Fluid-solid interaction heat transfer analysis of cylinder head in consideration of boiling and in-cylinder local heat transfer[J]. Internal Combustion Engine Engineering, 2017, 38(6): 139-144. | |
8 | TorregrosaA J, BroatchA, OlmedaP, et al. Experiments on subcooled flow boiling in I.C. engine-like conditions at low flow velocities[J]. Experimental Thermal and Fluid Science, 2014, 52: 347-354. |
9 | 刘永丰, 王龙飞, 花仕洋, 等. 矩形通道内过冷流动沸腾传热特性试验研究[J]. 内燃机工程, 2016, 37(2): 111-115. |
LiuY F, WangL F, HuaS Y, et al. Experimental on subcooled flow boiling heat transfer in a rectangular channel[J]. Internal Combustion Engine Engineering, 2016, 37(2): 111-115. | |
10 | PeyghambarzadehS M, HashemabadiS H, JamnaniM S, et al. Improving the cooling performance of automobile radiator with Al2O3/water nanofluid[J]. Applied Thermal Engineering, 2011, 31(10): 1833-1838. |
11 | VikulinA V, YaroslavtsevN L, ChesnovaV A. Development of the design scheme of cooling for a nozzle vane of high pressure turbine of gas turbine engine[J]. Russian Aeronautics, 2016, 59(1): 58-63. |
12 | LiuX, CaoY F, ZhangT E. Experimental study on boiling heat transfer in cylinder head jacket[J]. Advanced Materials Research, 2012, 433-440: 18-23. |
13 | MehdipourR, BaniamerianZ, DelauréY. Three dimensional simulation of nucleate boiling heat and mass transfer in cooling passages of internal combustion engines[J]. Heat and Mass Transfer, 2016, 52(5): 957-968. |
14 | SongJ H, LeeJ, ChangS H, et al. Onset of nucleate boiling in narrow, rectangular channel for downward flow under low pressure[J]. Annals of Nuclear Energy, 2017, 109: 498-506. |
15 | 高舒芳, 续彦芳, 杨帆. 柴油机冷却水套中无水冷却液的数值模拟分析[J]. 小型内燃机与摩托车, 2012, (5): 36-41. |
GaoS F, XuY F, YangF, et al. Numerical simulation analysis of anhydrous cooling fluid flow in diesel engine cooling water jacket[J]. Small Internal Combustion Engine & Motorcycle, 2012, (5): 36-41. | |
16 | AbediniE, ZareiT, RajabniaH, et al. Numerical investigation of vapor volume fraction in subcooled flow boiling of a nanofluid[J]. Journal of Molecular Liquids, 2017, 238: 281-289. |
17 | MohammadiA, HashemiH, JazayeriA, et al. Two phase flow simulation for nucleate boiling heat transfer calculation in water jacket of diesel engine[C]// Joint Fluids Engineering Conference. 2011: 1721-1729. |
18 | FontanesiS, GiacopiniM. Multiphase CFD–CHT optimization of the cooling jacket and FEM analysis of the engine head of a V6 diesel engine[J]. Applied Thermal Engineering, 2013, 52(2): 293-303. |
19 | 董非, 龚伟, 张威望, 等. 内燃机缸盖水腔内汽液流动可视化与传热试验[J]. 内燃机学报, 2015, (5): 466-471. |
DongF, GongW, ZhangW W, et al. Experiment of vapor-liquid flow visualization and heat transfer in water jacket of cylinder head of internal combustion engine [J]. Transactions of CSICE, 2015, (5): 466-471. | |
20 | 张俊红, 赵永欢, 徐喆轩, 等. 发动机水套中沸腾传热的试验与仿真研究[J]. 内燃机工程, 2018, 39(1): 42-48. |
ZhangJ H, ZhaoY H, XuZ X, et al. Simulation and experimental study on boiling heat transfer in engine water jacket[J]. Internal Combustion Engine Engineering, 2018, 39(1): 42-48. | |
21 | SteinerH, BrennG, RamstorferF, et al. Increased cooling power with nucleate boiling flow in automotive engine applications[C]//Chiaberge M. New Trends and Developments in Automotive System Engineering. Italy, 2011. |
22 | 雷冬旭, 白敏丽, 吕继组, 等. 内燃机鼻梁区内过冷沸腾两相流研究[J]. 内燃机工程, 2016, 37(6): 176-181. |
LeiD X, BaiM L, LyuJ Z, et al. Two-phase heat transfer study in the bridge zone of cylinder head about boiling supercooled[J]. Internal Combustion Engine Engineering, 2016, 37(6): 176-181. | |
23 | 何联格, 左正兴, 向建华. 汽泡尺寸对气缸盖沸腾换热的影响[J]. 内燃机学报, 2013, (1): 72-77. |
HeL G, ZuoZ X, XiangJ H, et al. Effect of bubble size on cylinder head boiling heat transfer [J]. Transactions of CSICE, 2013, (1): 72-77. | |
24 | HuaS Y, HuangR H, ZhouP. Numerical investigation of two-phase flow characteristics of subcooled boiling in IC engine cooling passages using a new 3D two-fluid model [J]. Applied Thermal Engineering, 2015, 90: 648-663. |
25 | RobinsonK. IC engine coolant heat transfer studies[D]. UK: University of Bath, 2001. |
26 | KurulN, PodowskiM Z. On the modeling of multidimensional effects in boiling channels[C]// Proceedings of the 27th National Heat Transfer Conference. Minneapolis, Minnesota, USA. 1991. |
27 | JuddR L, HwangK S. A comprehensive model for nucleate pool boiling heat transfer including microlayer evaporation [J]. ASME J. Heat Transfer, 1976, 98: 623-629. |
28 | TolubinskyV I, KostanchukD M. Vapour bubbles growth rate and heat transfer intensity at subcooled water boiling[C]// 4th. International Heat Transfer Conference. Paris, France, 1970. |
29 | LemmertM, ChawlaL M. Influence of Flow Velocity on Surface Boiling Heat Transfer Coefficient in Heat Transfer in Boiling[M]//Hahne E, Grigull U, Eds. New York, USA: Academic Press and Hemisphere, 1977. |
30 | ColeR. A photographic study of pool boiling in the region of the critical heat Flux [J]. AIChE J., 1960, 6: 533-542. |
31 | 董非. 考虑沸腾传热的内燃机流-固耦合及热负荷问题的数值模拟与应用研究[D]. 南京: 江苏大学, 2010. |
DongF. Numerical simulation and application study of fluid solid coupling and heat load problem of internal combustion engine considering boiling heat transfer [D]. Nanjing: Jiangsu University, 2010. | |
32 | 俞小莉, 郑飞, 严兆大. 内燃机气缸体内表面稳态传热边界条件的研究[J]. 内燃机学报, 1987, (4): 42-50. |
YuX L, ZhengF, YanZ D. The research of the boundary conditions of steady thermal conduction on the inner surface of cylinder in internal combustion engines [J]. Transactions of CSICE, 1987, (4): 42-50. |
[1] | Shaohua ZHOU, Feilong ZHAN, Guoliang DING, Hao ZHANG, Yanpo SHAO, Yantao LIU, Zheming GAO. Experimental study of flow noise in short tube throttle valve and noise reduction measures [J]. CIESC Journal, 2023, 74(S1): 113-121. |
[2] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[3] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[4] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[5] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[6] | Chao NIU, Shengqiang SHEN, Yan YANG, Bonian PAN, Yiqiao LI. Flow process calculation and performance analysis of methane BOG ejector [J]. CIESC Journal, 2023, 74(7): 2858-2868. |
[7] | Haopeng SHI, Dawen ZHONG, Xuexin LIAN, Junfeng ZHANG. Experimental study on the downward-facing surface enhanced boiling heat transfer of multiscale groove-fin structures [J]. CIESC Journal, 2023, 74(7): 2880-2888. |
[8] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[9] | Xuanzhi HE, Yongqing HE, Guiye WEN, Feng JIAO. Ferrofluid droplet neck self-similar breakup behavior [J]. CIESC Journal, 2023, 74(7): 2889-2897. |
[10] | Qichao LIU, Yunlong ZHOU, Cong CHEN. Analysis and calculation of void fraction of gas-liquid two-phase flow in vertical riser under fluctuating vibration [J]. CIESC Journal, 2023, 74(6): 2391-2403. |
[11] | Zihan YUAN, Shuyan WANG, Baoli SHAO, Lei XIE, Xi CHEN, Yimei MA. Investigation on flow characteristics of wet particles with power-law liquid-solid drag models in fluidized bed [J]. CIESC Journal, 2023, 74(5): 2000-2012. |
[12] | Shumin ZHENG, Pengcheng GUO, Jianguo YAN, Shuai WANG, Wenbo LI, Qi ZHOU. Experimental and predictive study on pressure drop of subcooled flow boiling in a mini-channel [J]. CIESC Journal, 2023, 74(4): 1549-1560. |
[13] | Jinsheng REN, Kerun LIU, Zhiwei JIAO, Jiaxiang LIU, Yuan YU. Research on the mechanism of disaggregation of particle aggregates near the guide vanes of turbo air classifier [J]. CIESC Journal, 2023, 74(4): 1528-1538. |
[14] | Wanyuan HE, Yiyu CHEN, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Study on gas-liquid mass transfer characteristics in microchannel with array bulges [J]. CIESC Journal, 2023, 74(2): 690-697. |
[15] | Xingyu YANG, You MA, Chunying ZHU, Taotao FU, Youguang MA. Study on liquid-liquid distribution in comb parallel microchannels [J]. CIESC Journal, 2023, 74(2): 698-706. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||