CIESC Journal ›› 2019, Vol. 70 ›› Issue (10): 3869-3879.DOI: 10.11949/0438-1157.20190607
• Reviews and monographs • Previous Articles Next Articles
Received:
2019-05-31
Revised:
2019-07-23
Online:
2019-10-05
Published:
2019-10-05
Contact:
Chun LI
通讯作者:
李春
作者简介:
李诺楠(1995—),女,硕士研究生,基金资助:
CLC Number:
Nuonan LI, Chun LI. Applications of glycosyltransferases in synthesis of triterpenoid saponins[J]. CIESC Journal, 2019, 70(10): 3869-3879.
李诺楠, 李春. 糖基转移酶在三萜皂苷合成中的应用[J]. 化工学报, 2019, 70(10): 3869-3879.
1 | Vincken J P , Heng L , Groot A D , et al . Saponins, classification and occurrence in the plant kingdom[J]. Phytochemistry, 2007, 68(3): 275-297. |
2 | Sawai S , Saito K . Triterpenoid biosynthesis and engineering in plants[J]. Frontiers in Plant Science, 2011, 2(25): 1-8. |
3 | Gauthier C , Legault J , Pichette A . Recent progress in the synthesis of naturally occurring triterpenoid saponins[J]. Mini-Reviews in Organic Chemistry. 2009, 6(4): 321-344. |
4 | Qi L W , Wang C Z , Yuan C S . Ginsenosides from American ginseng: chemical and pharmacological diversity[J]. Phytochemistry, 2011, 72(8): 689-699. |
5 | Zhao Y J , Lyu B , Feng X D , et al . Perspective on biotransformation and de novo biosynthesis of licorice constituents[J]. Journal of Agricultural and Food Chemistry, 2017, 65(51): 11147-11156. |
6 | Itkin M , Davidovich-Rikanati R , Cohen S , et al . The biosynthetic pathway of the nonsugar, high-intensity sweetener mogroside V from Siraitia grosvenorii [J]. Proceedings of the National Academy of Sciences. 2016, 113(47): E7619-E7628. |
7 | Scognamiglio M , D'Abrosca B , Fiumano V , et al . Oleanane saponins from Bellis sylvestris Cyr. and evaluation of their phytotoxicity on Aegilops geniculata Roth[J]. Phytochemistry, 2012, 84(12): 125-134. |
8 | Zhao Y J , Li C . Biosynthesis of plant triterpenoid saponins in microbial cell factories[J]. Journal of Agricultural and Food Chemistry, 2018, 66(46): 12155-12165. |
9 | Szakiel A , Pączkowski C , Henry M . Influence of environmental biotic factors on the content of saponins in plants[J]. Phytochemistry Reviews, 2011, 10(4): 471-491. |
10 | Lairson L L , Henrissat B , Davies G J , et al . Glycosyltransferases: structures, functions, and mechanisms[J]. Annual Review of Biochemistry, 2008, 77: 521-555. |
11 | Roberts S C . Production and engineering of terpenoids in plant cell culture[J]. Nature Chemical Biology, 2007, 3(7): 387-395. |
12 | Zhao F L , Bai P , Nan W H , et al . A modular engineering strategy for high‐level production of protopanaxadiol from ethanol by Saccharomyces cerevisiae [J]. AIChE Journal, 2019, 65(3): 866-874. |
13 | Kuzina V , Ekstrøm C T , Andersen S B . Identification of defense compounds in Barbarea vulgaris against the herbivore Phyllotreta nemorum by an ecometabolomic approach[J]. Plant Physiology, 2009, 151(4): 1977-1990. |
14 | Augustin J M , Sylvia D , Tetsuro S , et al . UDP-glycosyltransferases from the UGT73C subfamily in Barbarea vulgaris catalyze sapogenin 3-O-glucosylation in saponin-mediated insect resistance[J]. Plant Physiology, 2012, 160(4): 1881-1895. |
15 |
Xu J , Wang X D , Zhang H Y , et al . Synthesis of triterpenoid derivatives and their anti-tumor and anti-hepatic fibrosis activities[J]. Natural Product Research, 2018. DOI:10.1080/14786419.2018.1499642 .
DOI |
16 | 戴住波, 王勇, 周志华, 等 . 植物天然产物合成生物学研究[J]. 中国科学院院刊, 2018, 33(11): 106-116. |
Dai Z B , Wang Y , Zhou Z H , et al . Synthetic biology for production of plant-derived natural products[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(11): 106-116. | |
17 | Zhang S P , Wu Y Y , Jin J , et al . De novo characterization of Panax japonicus C. A. Mey transcriptome and genes related to triterpenoid saponin biosynthesis[J]. Biochemical and Biophysical Research Communications, 2015, 466(3): 450-455. |
18 | İ Gülçin , Mshvildadze V , Gepdiremen A , et al . The antioxidant activity of a triterpenoid glycoside isolated from the berries of Hedera colchica: 3-O-(beta-D-glucopyranosyl)-hederagenin[J]. Phytotherapy Research, 2006, 20(2): 130-134. |
19 | Cheng L , Liang S , Wu J , et al . A hederagenin saponin isolated from Clematis ganpiniana induces apoptosis in breast cancer cells via the mitochondrial pathway[J]. Oncology Letters, 2018, 15(2): 1737-1743. |
20 | 刘家鑫, 陈明明, 杨雪艳, 等 . 常春藤药材HPLC指纹图谱及8种成分的含量测定方法[J]. 沈阳药科大学学报, 2017, 34(11): 979-986. |
Liu J X , Chen M M , Yang X Y , et al . HPLC fingerprint and quantitative analysis of 8 components from Hedera helix [J]. Journal of Shenyang Pharmaceutical University, 2017, 34(11): 979-986. | |
21 | 田庆来, 官月平, 张波, 等 . 甘草有效成分的药理作用研究进展[J]. 天然产物研究与开发, 2006,18(2): 343-347. |
Tian Q L , Gaun Y P , Zhang B , et al . Research advances on pharmacological activities of components in licorice[J]. Natural Product Research and Development, 2006, 18(2): 343-347. | |
22 | 崔杏雨, 崔健, 陈树伟 . 甘草酸制备新工艺的研究[J]. 太原理工大学学报, 2001, 32(3): 271-273. |
Cui X Y , Cui J , Chen S W . Study of new technology of the preparation of glycrrhizic acid from licorice[J]. Journal of Taiyuan University of Technology, 2001, 32(3): 271-273. | |
23 | 韩金玉, 刘翀, 王华, 等 . 正相液相制备色谱分离纯化三七叶甙中人参皂甙单体Rb3[J]. 高校化学工程学报, 2005, 19(2): 192-196. |
Han J Y , Liu C , Wang H , et al . Isolation and purification of ginsenoide Rb3 by HPLC method[J]. Journal of Chemical Engineering of Chinese Universities, 2005, 19(2): 192-196. | |
24 | 孟祥颖, 刘银燕 . 氮, 磷, 钾配合施用对人参质量影响的研究[J]. 质量指南, 1996, (6): 36-37. |
Meng X Y , Liu Y Y . Studying of Panax ginseng C. A. meyer quality affected by N, P, K mixed[J]. Quality Guide, 1996, (6): 36-37. | |
25 | 张治安, 徐克章 . 光照条件对参株碳水化合物和人参皂甙含量的影响[J]. 吉林农业大学学报, 1994, (3): 15-17. |
Zhang Z A , Xu K Z . Effects of light intensity on content of soluble sugar , starch and ginseng saponins in ginseng plant[J]. Journal of Jilin Agricultural University, 1994, (3): 15-17. | |
26 | 邢建民, 赵德修, 李茂寅, 等 . 植物细胞培养生产黄酮类化合物研究进展[J]. 中国生物工程杂志, 2001, 21(1): 47-50. |
Xing J M , Zhao D X , Li M Y , et al . Advances in the production of flavonoids by plant cell cultures[J]. China Biotechnology, 2001, 21(1): 47-50. | |
27 | Paddon C J , Westfall P J , Pitera D J , et al . High-level semi-synthetic production of the potent antimalarial artemisinin[J]. Nature, 2013, 496(7446): 528. |
28 | Dai Z B , Liu Y , Zhang X A , et al . Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides[J]. Metabolic Engineering, 2013, 20: 146-156. |
29 | Dai Z B , Wang B B , Liu Y , et al . Producing aglycons of ginsenosides in bakers’ yeast[J]. Scientific Reports, 2014, 4: 3698. |
30 | Wang P P , Wei W , Ye W , et al . Synthesizing ginsenoside Rh2 in Saccharomyces cerevisiae cell factory at high-efficiency[J]. Cell Discovery, 2019, 5(1): 5. |
31 | Jung S C , Kim W , Park S C , et al . Two ginseng UDP-glycosyltransferases synthesize ginsenoside Rg3 and Rd[J]. Plant and Cell Physiology, 2014, 55(12): 2177-2188. |
32 | Kim O T , Um Y , Jin M L , et al . A novel multifunctional C-23 oxidase, CYP714E19, is involved in asiaticoside biosynthesis[J]. Plant and Cell Physiology, 2018, 59(6): 1200-1213. |
33 | Kim O T , Jin M L , Lee D Y , et al . Characterization of the asiatic acid glucosyltransferase, UGT73AH1, involved in asiaticoside biosynthesis in Centella asiatica (L.) Urban[J]. International Journal of Molecular Sciences, 2017, 18(12): 2630. |
34 | Han J Y , Chun J H , Oh S A , et al . Transcriptomic analysis of Kalopanax septemlobus and characterization of KsBAS, CYP716A94 and CYP72A397 genes involved in hederagenin saponin biosynthesis[J]. Plant and Cell Physiology, 2017, 59(2): 319–330. |
35 | Ø Erthmann P , Agerbirk N , Bak S . A tandem array of UDP-glycosyltransferases from the UGT73C subfamily glycosylate sapogenins, forming a spectrum of mono- and bisdesmosidic saponins[J]. Plant Molecular Biology, 2018, 97(1/2): 1-19. |
36 | Liu Q , Khakimov B , Cárdenas P D , et al . The cytochrome P450 CYP72A552 is key to production of hederagenin‐based saponins that mediate plant defense against herbivores[J]. New Phytologist, 2019, 222(3): 1599-1609. |
37 | Sun W T , Qin L , Xue H J , et al . Novel trends for producing plant triterpenoids in yeast[J]. Critical Reviews in Biotechnology, 2019, 39(5): 618-632. |
38 | Augustin J M , Kuzina V , Andersen S B , et al . Molecular activities, biosynthesis and evolution of triterpenoid saponins[J]. Phytochemistry, 2011, 72(6): 435-457. |
39 | Seki H , Tamura K , Muranaka T . P450s and UGTs: key players in the structural diversity of triterpenoid saponins[J]. Plant and Cell Physiology, 2015, 56(8): 1463-1471. |
40 | Jeena G S , SFatima, Tripathi P , et al . Comparative transcriptome analysis of shoot and root tissue of Bacopa monnieri identifies potential genes related to triterpenoid saponin biosynthesis[J]. BMC Genomics, 2017, 18(1): 490. |
41 | Luo H M , Sun C , Sun Y Z , et al . Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers[J]. BMC Genomics, 2011, 12(5): S5. |
42 | Moses T , Pollier J , Faizal A , et al . Unraveling the triterpenoid saponin biosynthesis of the African shrub Maesa lanceolata [J]. Molecular Plant, 2015, 8(1): 122-135. |
43 | Liu Y L , Zhang P F , Song M L , et al . Transcriptome analysis and development of SSR molecular markers in Glycyrrhiza uralensis Fisch[J]. Plos One, 2015, 10(11): e0143017. |
44 | Tang Q Y , Chen G , Song W L , et al . Transcriptome analysis of Panax zingiberensis identifies genes encoding oleanolic acid glucuronosyltransferase involved in the biosynthesis of oleanane-type ginsenosides[J]. Planta, 2018, 249(2): 393–406. |
45 | Dai L H , Li J , Yang J G , et al . Use of a promiscuous glycosyltransferase from Bacillus subtilis 168 for the enzymatic synthesis of novel protopanaxatriol-type ginsenosides[J]. Journal of Agricultural and Food Chemistry, 2018, 66(4): 943-949. |
46 | Zhang T T , Gong T , Hu Z F , et al . Enzymatic synthesis of unnatural ginsenosides using a promiscuous UDP-glucosyltransferase from Bacillus subtilis [J]. Molecules, 2018, 23(11): 2797. |
47 | Zhuang Y , Yang G Y , Chen X H , et al . Biosynthesis of plant-derived ginsenoside Rh2 in yeast via repurposing a key promiscuous microbial enzyme[J]. Metabolic Engineering, 2017, 42: 25-32. |
48 |
Rahimi S , Kim J , Mijakovic I , et al . Triterpenoid-biosynthetic UDP-glycosyltransferases from plants[J]. Biotechnology Advances, 2019. DOI: 10.1016/j.biotechadv.2019.04.016 .
DOI |
49 | Gloster T M . Advances in understanding glycosyltransferases from a structural perspective[J]. Current Opinion in Structural Biology, 2014, 28: 131-141. |
50 | Meech R , Hu D G , McKinnon R A , et al . The UDP-glycosyltransferase (UGT) superfamily: new members, new functions, and novel paradigms[J]. Physiological Reviews, 2019, 99(2): 1153-1222. |
51 | Liang D M , Liu J H , Wu H , et al . Glycosyltransferases: mechanisms and applications in natural product development[J]. Chemical Society Reviews, 2015, 44(22): 8350-8374. |
52 | Osbourn A . Saponins and plant defence — a soap story[J]. Trends in Plant Science, 1996, 1(1): 4-9. |
53 | Leung K W , Wong A S T . Pharmacology of ginsenosides: a literature review[J]. Chinese Medicine, 2010, 5(1): 20. |
54 | Lu J , Yao L , Li J X , et al . Characterization of UDP-glycosyltransferase involved in biosynthesis of ginsenosides Rg1 and Rb1 and identification of critical conserved amino acid residues for its function[J]. Journal of Agricultural and Food Chemistry, 2018, 66(36): 9446-9455. |
55 | Xu Q F , Fang X L , Chen D F . Pharmacokinetics and bioavailability of ginsenoside Rb1 and Rg1 from Panax notoginseng in rats[J]. Journal of Ethnopharmacology, 2003, 84(2): 187-192. |
56 | Lee S J , Lee J S , Lee E , et al . The ginsenoside metabolite compound K inhibits hormone-independent breast cancer through downregulation of cyclin D1[J]. Journal of Functional Foods, 2018, 46: 159-166. |
57 | Liao L M , Zhang Y , Lin S F , et al . Enzymatic transformation from protopanaxadiol ginsenoside Rb1 into rare ginsenoside C-K and its anti-cancer activity[J]. Advanced Materials Research, 2013, 641: 752-755. |
58 | Wang P P , Wei Y J , Fan Y , et al . Production of bioactive ginsenosides Rh2 and Rg3 by metabolically engineered yeasts[J]. Metabolic Engineering, 2015, 29: 97-105. |
59 | Yan X , Fan Y , Wei W , et al . Production of bioactive ginsenoside compound K in metabolically engineered yeast[J]. Cell Research, 2014, 24(6): 770. |
60 | 高雪岩, 王文全, 魏胜利, 等 . 甘草及其活性成分的药理活性研究进展[J]. 中国中药杂志, 2009, 34(21): 2695-2700. |
Gao X Y , Wang W Q , Wei S L , et al . Advances in studies on pharmacological activities of licorice and its active ingredients[J]. Chinese Journal of Chinese Materia Medica, 2009, 34(21): 2695-2700. | |
61 | Armanini D , Fiore C , Mattarello M J , et al . History of the endocrine effects of licorice[J]. Experimental and Clinical Endocrinology & Diabetes. 2002, 110(6): 257-261. |
62 | Cinatl J , Morgenstern B , Bauer G , et al . Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus[J]. The Lancet, 2003, 361(9374): 2045-2046. |
63 | Mabuchi A , Wake K , Marlini M , et al . Protection by glycyrrhizin against warm ischemia-reperfusion-induced cellular injury and derangement of the microcirculatory blood flow in the rat liver[J]. Microcirculation, 2010, 16(4): 364-376. |
64 | 谢彦, 徐淑永, 曾和平 . 甘草属植物中三萜类化合物研究概述[J]. 广州化工, 2004, 32(1): 1-5. |
Xie Y , Xu S Y , Zeng H P . A survey on triterpenolids of glycyrrhiza[J]. Guangzhou Chemical Industry, 2004, 32(1): 1-5. | |
65 | Zhu M , Wang C X , Sun W T , et al . Boosting 11-oxo-β-amyrin and glycyrrhetinic acid synthesis in Saccharomyces cerevisiae via pairing novel oxidation and reduction system from legume plants[J]. Metabolic Engineering, 2018, 45: 43-50. |
66 | Seki H , Sawai S , Ohyama K , et al . Triterpene functional genomics in licorice for identification of CYP72A154 involved in the biosynthesis of glycyrrhizin[J]. The Plant Cell, 2011, 23(11): 4112-4123. |
67 | Seki H , Ohyama K , Sawai S , et al . Licorice β-amyrin 11-oxidase, a cytochrome P450 with a key role in the biosynthesis of the triterpene sweetener glycyrrhizin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(37): 14204-14209. |
68 | Xu G J , Cai W , Gao W , et al . A novel glucuronosyltransferase has an unprecedented ability to catalyse continuous two-step glucuronosylation of glycyrrhetinic acid to yield glycyrrhizin[J]. New Phytologist, 2016, 212(1): 123–135. |
69 | He J B , Chen K , Hu Z M , et al . UGT73F17, a new glycosyltransferase from Glycyrrhiza uralensis, catalyzes the regiospecific glycosylation of pentacyclic triterpenoids[J]. Chemical Communications, 2018, 54(62): 8594-8597. |
70 | Liu X C , Zhang L , Feng X D , et al . Biosynthesis of glycyrrhetinic acid-3-O-monoglucose using glycosyltransferase UGT73C11 from Barbarea vulgaris [J]. Industrial & Engineering Chemistry Research, 2017, 56(51): 14949-14958. |
71 | Lee S O , Simons A L , Murphy P A , et al . Soyasaponins lowered plasma cholesterol and increased fecal bile acids in female golden Syrian hamsters [J]. Experimental Biology and Medicine, 2005, 230(7): 472-478. |
72 | Kinjo J , Imagire M , Udayama M , et al . Structure-hepatoprotective relationships study of soyasaponins I—IV having soyasapogenol B as aglycone[J]. Planta Medica, 1998, 64(3): 233-236. |
73 | Shibuya M , Nishimura K , Yasuyama N , et al . Identification and characterization of glycosyltransferases involved in the biosynthesis of soyasaponin I in Glycine max [J]. FEBS Letters, 2010, 584(11): 2258-2264. |
74 | Kurosawa Y , Takahara H , Shiraiwa M . UDP-glucuronic acid: soyasapogenol glucuronosyltransferase involved in saponin biosynthesis in germinating soybean seeds[J]. Planta, 2002, 215(4): 620–629. |
75 | Sayama T , Ono E , Takagi K , et al . The Sg-1 glycosyltransferase locus regulates structural diversity of triterpenoid saponins of soybean[J]. The Plant Cell, 2012, 24(5): 2123–2138. |
[1] | Xin LIU, Jun GE, Chun LI. Light-driven microbial hybrid systems improve level of biomanufacturing [J]. CIESC Journal, 2023, 74(1): 330-341. |
[2] | Xue LIU, Lijuan ZHANG, Guangrong ZHAO. Commensalistic Escherichia coli coculture for biosynthesis of daidzein [J]. CIESC Journal, 2022, 73(9): 4015-4024. |
[3] | Jingnan WANG, Jian PANG, Lei QIN, Chao GUO, Bo LYU, Chun LI, Chao WANG. Breeding and modification strategies of butenyl-spinosyn high-yield strains [J]. CIESC Journal, 2022, 73(2): 566-576. |
[4] | Yi SUN, Teng ZHANG, Bo LYU, Chun LI. Improvement for fine regulation of microbial cell factory by intracellular biosensors [J]. CIESC Journal, 2022, 73(2): 521-534. |
[5] | Xinhui WANG, Ying WANG, Mingdong YAO, Wenhai XIAO. Research progress of vitamin A biosynthesis [J]. CIESC Journal, 2022, 73(10): 4311-4323. |
[6] | Wulin ZHOU, Huifang GAO, Yuling WU, Xian ZHANG, Meijuan XU, Taowei YANG, Minglong SHAO, Zhiming RAO. Engineering of Saccharomyces cerevisiae for biosynthesis of campesterol [J]. CIESC Journal, 2021, 72(8): 4314-4324. |
[7] | MAO Jinzhu, XIAO Shuling, YANG Zhichun, WANG Xiaoyu, ZHANG Shi, CHEN Junhong, XIE Jisheng, CHEN Fude, HUANG Zinuo, FENG Tianyu, ZHANG Aihui, FANG Baishan. Application of synthetic biology in pesticides residues detection [J]. CIESC Journal, 2021, 72(5): 2413-2425. |
[8] | WANG Xin, ZHAO Peng, LI Qingyang, TIAN Pingfang. Research advances in semiconductor synthetic biology [J]. CIESC Journal, 2021, 72(5): 2426-2435. |
[9] | WANG Kaifeng, WANG Jinpeng, WEI Ping, JI Xiaojun. Metabolic engineering of Yarrowia lipolytica to produce fatty acids and their derivatives [J]. CIESC Journal, 2021, 72(1): 351-365. |
[10] | ZHAO Zhenyao, ZHANG Baocai, LI Feng, SONG Hao. Design and construction of exoelectrogens by synthetic biology [J]. CIESC Journal, 2021, 72(1): 468-482. |
[11] | WANG Lian, WU Di, ZHOU Jingwen. Research progress of lignans biosynthesis and their microbial production [J]. CIESC Journal, 2021, 72(1): 320-333. |
[12] | Hutao GAO, Xiaolin SHEN, Xinxiao SUN, Jia WANG, Qipeng YUAN. Metabolic engineering strategies in biosynthesis of amino acids and their derivatives [J]. CIESC Journal, 2020, 71(9): 4058-4070. |
[13] | Jing XU, Zixuan YOU, Junqi ZHANG, Zheng CHEN, Deguang WU, Feng LI, Hao SONG. Advances in engineering electroactive biofilms by synthetic biology approaches [J]. CIESC Journal, 2020, 71(9): 3950-3962. |
[14] | Lei QIN, Jie YU, Xiaoyu NING, Wentao SUN, Chun LI. Synthetic biological system construction and green intelligent biological manufacturing [J]. CIESC Journal, 2020, 71(9): 3979-3994. |
[15] | Yanqin XU, Xizhi YANG, Ruoshi LUO, Yuhong HUANG, Feng HUO, Dan WANG. Application of synthetic biology in manufacture of bio-based plastics [J]. CIESC Journal, 2020, 71(10): 4520-4531. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 642
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 506
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||