CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4409-4428.DOI: 10.11949/0438-1157.20190615
• Reviews and monographs • Previous Articles Next Articles
Received:
2020-05-29
Revised:
2020-07-09
Online:
2020-10-05
Published:
2020-10-05
Contact:
Yao WANG
通讯作者:
王尧
作者简介:
王尧(1991—),男,博士,副研究员,于2009.9—2018.6在重庆大学分别获得学士、硕士和博士学位,基金资助:
CLC Number:
Yao WANG,Yiyun TANG. Advances in single-atom catalysts for oxygen electrodes[J]. CIESC Journal, 2020, 71(10): 4409-4428.
王尧,唐艺芸. 氧电极金属单原子催化剂的研究进展[J]. 化工学报, 2020, 71(10): 4409-4428.
Add to citation manager EndNote|Ris|BibTeX
1 | Wang X X, Cullen D A, Pan Y T, et al. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells[J]. Adv. Mater., 2018, 30(11): 1706758. |
2 | Chen M X, Zhu M, Zuo M, et al. Identification of catalytic sites for oxygen reduction in metal/nitrogen-doped carbons with encapsulated metal nanoparticles[J]. Angew. Chem. Int. Ed., 2020, 59(4): 1627-1633. |
3 | Han J, Meng X, Lu L, et al. Single-atom Fe-Nx-C as an efficient electrocatalyst for zinc-air batteries[J]. Adv. Funct. Mater., 2019, 29(41): 1808872. |
4 | Yang L, Shi L, Wang D, et al. Single-atom cobalt electrocatalysts for foldable solid-state Zn-air battery[J]. Nano Energy, 2018, 50: 691-698. |
5 | Zhang H, Zhou W, Chen T, et al. A modular strategy for decorating isolated cobalt atoms into multichannel carbon matrix for electrocatalytic oxygen reduction[J]. Energy Environ. Sci., 2018, 11(8): 1980-1984. |
6 | Zhang D, Chen W, Li Z, et al. Isolated Fe and Co dual active sites on nitrogen-doped carbon for a highly efficient oxygen reduction reaction[J]. Chem. Commun., 2018, 54(34): 4274-4277. |
7 | Yang S, Yu Y, Dou M, et al. Two-dimensional conjugated aromatic networks as high-site-density and single-atom electrocatalysts for the oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2019, 58(41): 14724-14730. |
8 | Lyu X, Li G, Chen X, et al. Atomic cobalt on defective bimodal mesoporous carbon toward efficient oxygen reduction for zinc-air batteries[J]. Small Methods, 2019, 3(9): 1800450. |
9 | Li J, Liu H, Wang M, et al. Boosting oxygen reduction activity with low-temperature derived high-loading atomic cobalt on nitrogen-doped graphene for efficient Zn-air batteries[J]. Chem. Commun., 2019, 55(3): 334-337. |
10 | Bai L, Hsu C S, Alexander D T L, et al. A cobalt-iron double-atom catalyst for the oxygen evolution reaction[J]. J. Am. Chem. Soc., 2019, 141(36): 14190-14199. |
11 | Ji D, Fan L, Li L, et al. Atomically transition metals on self-supported porous carbon flake arrays as binder-free air cathode for wearable zinc-air batteries[J]. Adv. Mater., 2019, 31(16): 1808267. |
12 | Peng P, Shi L, Huo F, et al. A pyrolysis-free path toward superiorly catalytic nitrogen-coordinated single atom[J]. Science Advances, 2019, 5(8): eaaw2322. |
13 | Lin Y, Liu P, Velasco E, et al. Fabricating single-atom catalysts from chelating metal in open frameworks[J]. Adv. Mater., 2019, 31(18): 1808193. |
14 | Chen Y, Ji S, Wang Y, et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2017, 56(24): 6937-6941. |
15 | Han Y, Wang Y G, Chen W, et al. Hollow N-doped carbon spheres with isolated cobalt single atomic sites: superior electrocatalysts for oxygen reduction[J]. J. Am. Chem. Soc., 2017, 139(48): 17269-17272. |
16 | Wang Z, Xu S M, Xu Y, et al. Single Ru atoms with precise coordination on a monolayer layered double hydroxide for efficient electrooxidation catalysis[J]. Chem. Sci., 2019, 10(2): 378-384. |
17 | Liu L, Su H, Tang F, et al. Confined organometallic Au1Nx single-site as an efficient bifunctional oxygen electrocatalyst[J]. Nano Energy, 2018, 46: 110-116. |
18 | Li B Q, Zhao C X, Chen S, et al. Framework-porphyrin-derived single-atom bifunctional oxygen electrocatalysts and their applications in Zn-air batteries[J]. Adv. Mater., 2019, 31(19): 1900592. |
19 | Yan J, Kong L, Ji Y, et al. Single atom tungsten doped ultrathin α-Ni(OH)2 for enhanced electrocatalytic water oxidation[J]. Nat. Commun., 2019, 10(1): 2149. |
20 | Li W, Min C, Tan F, et al. Bottom-up construction of active sites in a Cu-N4-C catalyst for highly efficient oxygen reduction reaction[J]. ACS Nano, 2019, 13(3): 3177-3187. |
21 | Luo E, Zhang H, Wang X, et al. Single-atom Cr-N4 sites designed for durable oxygen reduction catalysis in acid media[J]. Angew. Chem. Int. Ed., 2019, 58(36): 12469-12475. |
22 | Han G, Zheng Y, Zhang X, et al. High loading single-atom Cu dispersed on graphene for efficient oxygen reduction reaction[J]. Nano Energy, 2019, 66: 104088. |
23 | Cui L, Cui L, Li Z, et al. A copper single-atom catalyst towards efficient and durable oxygen reduction for fuel cells[J]. J. Mater. Chem. A, 2019, 7(28): 16690-16695. |
24 | Chen Z, Gong W, Liu Z, et al. Coordination-controlled single-atom tungsten as a non-3d-metal oxygen reduction reaction electrocatalyst with ultrahigh mass activity[J]. Nano Energy, 2019, 60: 394-403. |
25 | Yang S, Tak Y J, Kim J, et al. Support effects in single-atom platinum catalysts for electrochemical oxygen reduction[J]. ACS Catal., 2017, 7(2): 1301-1307. |
26 | Liu J, Jiao M, Mei B, et al. Carbon-supported divacancy-anchored platinum single-atom electrocatalysts with superhigh Pt utilization for the oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2019, 58(4): 1163-1167. |
27 | Babu D D, Huang Y, Anandhababu G, et al. Atomic iridium@cobalt nanosheets for dinuclear tandem water oxidation[J]. J. Mater. Chem. A, 2019, 7(14): 8376-8383. |
28 | Yao Y, Hu S, Chen W, et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis[J]. Nat. Catal., 2019, 2(4): 304-313. |
29 | Li P, Wang M, Duan X, et al. Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides[J]. Nat. Commun., 2019, 10(1): 1711. |
30 | Cao L, Luo Q, Chen J, et al. Dynamic oxygen adsorption on single-atomic ruthenium catalyst with high performance for acidic oxygen evolution reaction[J]. Nat. Commun., 2019, 10(1): 4849. |
31 | Wang C, Zhang H, Wang J, et al. Atomic Fe embedded in carbon nanoshells-graphene nanomeshes with enhanced oxygen reduction reaction performance[J]. Chem. Mater., 2017, 29(23): 9915-9922. |
32 | Sun H, Wang M, Du X, et al. Modulating the d-band center of boron doped single-atom sites to boost the oxygen reduction reaction[J]. J. Mater. Chem. A, 2019, 7(36): 20952-20957. |
33 | Muthukrishnan A, Nabae Y, Okajima T, et al. Kinetic approach to investigate the mechanistic pathways of oxygen reduction reaction on Fe-containing N-doped carbon catalysts[J]. ACS Catal., 2015, 5(9): 5194-5202. |
34 | Qiu X, Yan X, Pang H, et al. Isolated Fe single atomic sites anchored on highly steady hollow graphene nanospheres as an efficient electrocatalyst for the oxygen reduction reaction[J]. Adv. Sci., 2019, 6(2): 1801103. |
35 | Yang Z, Wang Y, Zhu M, et al. Boosting oxygen reduction catalysis with Fe-N4 sites decorated porous carbons toward fuel cells[J]. ACS Catal., 2019, 9(3): 2158-2163. |
36 | Xiao F, Xu G L, Sun C J, et al. Nitrogen-coordinated single iron atom catalysts derived from metal organic frameworks for oxygen reduction reaction[J]. Nano Energy, 2019, 61: 60-68. |
37 | Li J C, Cheng M, Li T, et al. Carbon nanotube-linked hollow carbon nanospheres doped with iron and nitrogen as single-atom catalysts for the oxygen reduction reaction in acidic solutions[J]. J. Mater. Chem. A, 2019, 7(24): 14478-14482. |
38 | He T, Zhang Y, Chen Y, et al. Single iron atoms stabilized by microporous defects of biomass-derived carbon aerogels as high-performance cathode electrocatalysts for aluminum–air batteries[J]. J. Mater. Chem. A, 2019, 7(36): 20840-20846. |
39 | Cheng Y, He S, Lu S, et al. Iron single atoms on graphene as nonprecious metal catalysts for high-temperature polymer electrolyte membrane fuel cells[J]. Adv. Sci., 2019, 6(10): 1802066. |
40 | Han X, Ling X, Yu D, et al. Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution[J]. Adv. Mater., 2019, 31(49): 1905622. |
41 | Cheng Y, Dai J, Song Y, et al. Nanostructure of Cr2CO2 MXene supported single metal atom as an efficient bifunctional electrocatalyst for overall water splitting[J]. ACS Appl. Energy Mater., 2019, 2(9): 6851-6859. |
42 | Zhang H, Liu Y, Chen T, et al. Unveiling the activity origin of electrocatalytic oxygen evolution over isolated Ni atoms supported on a N-doped carbon Matrix[J]. Adv. Mater., 2019, 31(48): 1904548. |
43 | Holton O T, Stevenson J W. The role of platinum in proton exchange membrane fuel cells[J]. Platinum Metals Review, 2013, 57(4): 259-271. |
44 | Rossmeisl J, Qu Z W, Zhu H, et al. Electrolysis of water on oxide surfaces[J]. Journal of Electroanalytical Chemistry, 2007, 607(1/2): 83-89. |
45 | Man I C, Su H Y, Calle-Vallejo F, et al. Universality in oxygen evolution electrocatalysis on oxide surfaces[J]. ChemCatChem, 2011, 3(7): 1159-1165. |
46 | Qiao B, Wang A, Yang X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nat. Chem., 2011, 3(8): 634-641. |
47 | Liu J, Jiao M, Lu L, et al. High performance platinum single atom electrocatalyst for oxygen reduction reaction[J]. Nat. Commun., 2017, 8: 15938. |
48 | Li S, Liu J, Yin Z, et al. Impact of the coordination environment on atomically dispersed Pt catalysts for oxygen reduction reaction[J]. ACS Catal., 2020, 10(1): 907-913 |
49 | Xiao M, Gao L, Wang Y, et al. Engineering energy level of metal center: Ru single-atom site for efficient and durable oxygen reduction catalysis[J]. J. Am. Chem. Soc., 2019, 141(50): 19800–19806 |
50 | Zhang C, Sha J, Fei H, et al. Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium[J]. ACS Nano, 2017, 11(7): 6930-6941. |
51 | Liu Q, Li Y, Zheng L, et al. Sequential synthesis and active-site coordination principle of precious metal single‐atom catalysts for oxygen reduction reaction and PEM fuel cells[J]. Adv. Energy Mater., 2020, 10: 2000689. |
52 | Xiao M, Zhu J, Li G, et al. A single-atom iridium heterogeneous catalyst in oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2019, 58(28): 9640-9645. |
53 | Al-Zoubi T, Zhou Y, Yin X, et al. Preparation of nonprecious metal electrocatalysts for the reduction of oxygen using a low-temperature sacrificial metal[J]. J. Am. Chem. Soc., 2020, 142(12): 5477-5481 |
54 | Zhang J, Zhao Y, Chen C, et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions[J]. J. Am. Chem. Soc., 2019, 141(51): 20118-20126 |
55 | Yuan K, Lützenkirchen-Hecht D, Li L, et al. Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: nitrogen and phosphorus dual coordination[J]. J. Am. Chem. Soc., 2020, 142(5): 2404-2412 |
56 | Hou C C, Zou L, Sun L, et al. Single-atom iron catalysts on overhang-eave carbon cages for high-performance oxygen reduction reaction[J].Angew. Chem. Int. Ed., 2020, 59(19): 7384-7389 |
57 | Zhang Z, Gao X, Dou M, et al. Biomass derived N-doped porous carbon supported single Fe atoms as superior electrocatalysts for oxygen reduction[J]. Small, 2017, 13(22): 1604290. |
58 | Shen H, Gracia-Espino E, Ma J, et al. Synergistic effects between atomically dispersed Fe-N-C and C-S-C for the oxygen reduction reaction in acidic media[J]. Angew. Chem. Int. Ed., 2017, 56(44): 13800-13804. |
59 | Jiang W J, Hu W L, Zhang Q H, et al. From biological enzyme to single atomic Fe-N-C electrocatalyst for efficient oxygen reduction[J]. Chem. Commun., 2018, 54(11): 1307-1310. |
60 | Jia N, Xu Q, Zhao F, et al. Fe/N Co doped carbon nanocages with single-atom feature as efficient oxygen reduction reaction electrocatalyst[J]. ACS Appl. Energy Mater., 2018, 1(9): 4982-4990. |
61 | Cheng C, Li S, Xia Y, et al. Atomic Fe-Nx coupled open-mesoporous carbon nanofibers for efficient and bioadaptable oxygen electrode in Mg-air batteries[J]. Adv. Mater., 2018:30(40): 1802669. |
62 | Li Q, Chen W, Xiao H, et al. Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction[J]. Adv. Mater., 2018, 30(25): 1800588. |
63 | Jiao L, Wan G, Zhang R, et al. From metal-organic frameworks to single-atom Fe implanted N-doped porous carbons: efficient oxygen reduction in both alkaline and acidic media[J]. Angew. Chem. Int. Ed., 2018, 57(28): 8525-8529. |
64 | Han Y, Wang Y, Xu R, et al. Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal[J]. Energy Environ. Sci., 2018, 11(9): 2348-2352. |
65 | Jiang R, Li L, Sheng T, et al. Edge-site engineering of atomically dispersed Fe-N4 by selective C-N bond cleavage for enhanced oxygen reduction reaction activities[J]. J. Am. Chem. Soc., 2018, 140(37): 11594-11598. |
66 | Yang Z K, Yuan C Z, Xu A W. A rationally designed Fe-tetrapyridophenazine complex: a promising precursor to a single-atom Fe catalyst for an efficient oxygen reduction reaction in high-power Zn-air cells[J]. Nanoscale, 2018, 10(34): 16145-16152. |
67 | Li J C, Yang Z Q, Tang D M, et al. N-doped carbon nanotubes containing a high concentration of single iron atoms for efficient oxygen reduction[J]. NPG Asia Mater., 2018, 10(1): e461. |
68 | Zhang Z, Sun J, Wang F, et al. Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework[J]. Angew. Chem. Int. Ed., 2018, 57(29): 9038-9043. |
69 | Ao X, Zhang W, Li Z, et al. Markedly enhanced oxygen reduction activity of single-atom Fe catalysts via integration with Fe nanoclusters[J]. ACS Nano, 2019, 13(10): 11853-11862. |
70 | Chen Y, Li Z, Zhu Y, et al. Atomic Fe dispersed on N-doped carbon hollow nanospheres for high-efficiency electrocatalytic oxygen reduction[J]. Adv. Mater., 2019, 31(8): 1806312. |
71 | Zhao L, Zhang Y, Huang L B, et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts[J]. Nat. Commun., 2019, 10(1): 1278. |
72 | Miao Z, Wang X, Tsai M C, et al. Atomically dispersed Fe-Nx/C electrocatalyst boosts oxygen catalysis via a new metal-organic polymer supramolecule strategy[J]. Adv. Energy Mater., 2018, 8(24): 1801226. |
73 | Chen Y, Ji S, Zhao S, et al. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell[J]. Nat. Commun., 2018, 9(1): 5422. |
74 | Yang Z K, Yuan C Z, Xu A W. Confined pyrolysis within a nanochannel to form a highly efficient single iron site catalyst for Zn-air batteries[J]. ACS Energy Lett., 2018, 3(10): 2383-2389. |
75 | Chen S, Zhang N, Narváez Villarrubia C W, et al. Single Fe atoms anchored by short-range ordered nanographene boost oxygen reduction reaction in acidic media[J]. Nano Energy, 2019, 66: 104164. |
76 | Liu Q, Liu X, Zheng L, et al. The solid-phase synthesis of an Fe-N-C electrocatalyst for high-power proton-exchange membrane fuel cells[J]. Angew. Chem. Int. Ed., 2018, 57(5): 1204-1208. |
77 | Zhu C, Shi Q, Xu B Z, et al. Hierarchically porous M-N-C (M=Co and Fe) single-atom electrocatalysts with robust MNx active moieties enable enhanced ORR performance[J]. Adv. Energy Mater., 2018, 8(29): 1801956. |
78 | Yin P, Yao T, Wu Y, et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts[J]. Angew. Chem. Int. Ed., 2016, 55(36): 10800-10805. |
79 | Cheng Q, Yang L, Zou L, et al. Single cobalt atom and N codoped carbon nanofibers as highly durable electrocatalyst for oxygen reduction reaction[J]. ACS Catal., 2017, 7(10): 6864-6871. |
80 | Wang J, Huang Z, Liu W, et al. Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction[J]. J. Am. Chem. Soc., 2017, 139(48): 17281-17284. |
81 | Han A, Chen W, Zhang S, et al. A polymer encapsulation strategy to synthesize porous nitrogen-doped carbon-nanosphere-supported metal isolated-single-atomic-site catalysts[J]. Adv. Mater., 2018, 30(15): 1706508. |
82 | Jiang H, He Q, Wang C, et al. Definitive structural identification toward molecule-type sites within 1D and 2D carbon-based catalysts[J]. Adv. Energy Mater., 2018, 8(19): 1800436. |
83 | Wang Y, Chen L, Mao Z, et al. Controlled synthesis of single cobalt atom catalysts via a facile one-pot pyrolysis for efficient oxygen reduction and hydrogen evolution reactions[J]. Science Bulletin, 2019, 64(15): 1095-1102. |
84 | Li J, Chen S, Yang N, et al. Ultrahigh-loading zinc single-atom catalyst for highly efficient oxygen reduction in both acidic and alkaline media[J]. Angew. Chem. Int. Ed., 2019, 58(21): 7035-7039. |
85 | Qu Y, Li Z, Chen W, et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms[J]. Nat. Catal., 2018, 1(10): 781-786. |
86 | Li F, Han G F, Noh H J, et al. Boosting oxygen reduction catalysis with abundant copper single atom active sites[J]. Energy Environ. Sci., 2018, 11(8): 2263-2269. |
87 | Shang H, Zhou X, Dong J, et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity[J]. Nat. Commun., 2020, 11: 3049. |
88 | Wang Q, Huang X, Zhao Z L, et al. Ultrahigh-loading of Ir single atoms on NiO matrix to dramatically enhance oxygen evolution reaction[J]. J. Am. Chem. Soc., 2020, 142(16): 7425-7433. |
89 | Jiang K, Luo M, Peng M, et al. Dynamic active-site generation of atomic iridium stabilized on nanoporous metal phosphides for water oxidation[J]. Nat. Commun., 2020, 11: 2701. |
90 | Zhang Z, Feng C, Liu C, et al. Electrochemical deposition as a universal route for fabricating single-atom catalysts[J]. Nat. Commun., 2020, 11: 1215. |
91 | Zhang Y, Wu C, Jiang H, et al. Atomic iridium incorporated in cobalt hydroxide for efficient oxygen evolution catalysis in neutral electrolyte[J]. Adv. Mater., 2018, 30(18): 1707522. |
92 | Cai C, Han S, Wang Q, et al. Direct observation of yolk-shell transforming to gold single atoms and clusters with superior oxygen evolution reaction efficiency[J]. ACS Nano, 2019, 13(8): 8865-8871. |
93 | Zhang J, Liu J, Xi L, et al. Single-atom Au/NiFe layered double hydroxide electrocatalyst: probing the origin of activity for oxygen evolution reaction[J]. J. Am. Chem. Soc., 2018, 140(11): 3876-3879. |
94 | Lin C, Zhao Y, Zhang H, et al. Accelerated active phase transformation of NiO powered by Pt single atoms for enhanced oxygen evolution reaction[J]. Chem. Sci., 2018, 9(33): 6803-6812. |
95 | Zhang L, Jia Y, Gao G, et al. Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions[J]. Chem, 2018, 4(2): 285-297. |
96 | Sun H, Liu S, Wang M, et al. Updating the intrinsic activity of a single-atom site with a P-O bond for a rechargeable Zn-air battery[J]. ACS Appl. Mater. Interfaces, 2019, 11(36): 33054-33061. |
97 | Zhang Y, Wang Y, Liu L, et al. Robust bifunctional lanthanide cluster based metal-organic frameworks (MOFs) for tandem Deacetalization-Knoevenagel reaction[J]. Inorg. Chem., 2018, 57(4): 2193-2198. |
98 | Zheng Y, Jiao Y, Zhu Y, et al. Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions[J]. J. Am. Chem. Soc., 2017, 139(9): 3336-3339. |
99 | Fei H, Dong J, Feng Y, et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities[J]. Nat. Catal., 2018, 1(1): 63-72. |
100 | Zeng X, Shui J, Liu X, et al. Single-atom to single-atom grafting of Pt1 onto Fe-N4 center: Pt1@Fe-N-C multifunctional electrocatalyst with significantly enhanced properties[J]. Adv. Energy Mater., 2018, 8(1): 1701345. |
101 | Pan Y, Liu S, Sun K, et al. A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe-N4 catalytic site:a superior trifunctional catalyst for overall water splitting and Zn-air batteries[J]. Angew. Chem. Int. Ed., 2018, 57(28): 8614-8618. |
102 | Wu J, Zhou H, Li Q, et al. Densely populated isolated single Co-N site for efficient oxygen electrocatalysis[J]. Adv. Energy Mater., 2019, 9(22): 1900149. |
103 | Amiinu I S, Liu X, Pu Z, et al. From 3D ZIF nanocrystals to Co-Nx/C nanorod array electrocatalysts for ORR, OER, and Zn-air batteries[J]. Adv. Funct. Mater., 2018, 28(5): 1704638. |
104 | Zang W, Sumboja A, Ma Y, et al. Single Co atoms anchored in porous N-doped carbon for efficient zinc-air battery cathodes[J]. ACS Catal., 2018, 8(10): 8961-8969. |
105 | Li S, Cheng C, Zhao X, et al. Active salt/silica-templated 2D mesoporous FeCo-Nx-carbon as bifunctional oxygen electrodes for zinc-air batteries[J]. Angew. Chem. Int. Ed., 2018, 57(7): 1856-1862. |
106 | Yang S, Kim J, Tak Y J, et al. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions[J]. Angew. Chem. Int. Ed., 2016, 55(6): 2058-2062. |
107 | Han X, Ling X, Wang Y, et al. Generation of nanoparticle, atomic-cluster, and single-atom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in zinc-air batteries[J]. Angew. Chem. Int. Ed., 2019, 58(16): 5359-5364. |
108 | Tang C, Wang B, Wang H F, et al. Defect engineering toward atomic Co-Nx-C in hierarchical graphene for rechargeable flexible solid Zn-air batteries[J]. Adv. Mater., 2017, 29(37): 1703185. |
[1] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[2] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
[3] | Zhiguang QIAN, Yue FAN, Shixue WANG, Like YUE, Jinshan WANG, Yu ZHU. Effect of purging conditions on the impedance relaxation phenomenon and low temperature start-up of PEMFC [J]. CIESC Journal, 2023, 74(3): 1286-1293. |
[4] | Hao ZHANG, Ziyue WANG, Yujie CHENG, Xiaohui HE, Hongbing JI. Progress in the mass production of single-atom catalysts [J]. CIESC Journal, 2023, 74(1): 276-289. |
[5] | Xiang GUO, Jinshuo QIAO, Zhenhua WANG, Wang SUN, Kening SUN. Progress of structure for carbon-fueled solid oxide fuel cells [J]. CIESC Journal, 2023, 74(1): 290-302. |
[6] | Jian SHAO, Junzong FENG, Fengqi LIU, Yonggang JIANG, Liangjun LI, Jian FENG. Research progress on structural modulation and functionalized preparation of phenolic resin-based carbon microspheres [J]. CIESC Journal, 2022, 73(9): 3787-3801. |
[7] | Wanchen ZHANG, Xiaoyang CHEN, Qiuqiu LYU, Qin ZHONG, Tenglong ZHU. Performance and durability of cobalt doped SrTi0.3Fe0.7O3-δ anode SOFC fueled with by-product gas from chemical industry [J]. CIESC Journal, 2022, 73(9): 4079-4086. |
[8] | Chengyi AI, Jinshuo QIAO, Zhenhuan WANG, Wang SUN, Kening SUN. Investigation on PrBaFe2O6-δ anode material with in-situ FeNi nanoparticle in direct carbon solid oxide fuel cell [J]. CIESC Journal, 2022, 73(8): 3708-3719. |
[9] | Wenhuai LI, Wei ZHOU. Analysis of influencing factors and design strategies of high oxygen ion conductivity perovskite [J]. CIESC Journal, 2022, 73(4): 1455-1471. |
[10] | Juan ZHAO, Mengcheng WU, Jinglei LEI, Lingjie LI. One-step hydrothermal method toward preparation of Ni3S2@Mo2S3 high-efficient catalyst for oxygen evolution reaction in water electrolysis [J]. CIESC Journal, 2022, 73(4): 1575-1584. |
[11] | Ming PENG, Qiangfeng XIA, Lixiang JIANG, Ruiyuan ZHANG, Lingyi GUO, Li CHEN, Wenquan TAO. Study on the effect of gas channel arrangement on the performance of air-cooled fuel cells [J]. CIESC Journal, 2022, 73(10): 4625-4637. |
[12] | FU Fengyan, XING Guang'en. Progress of polymer-based anion exchange membrane for alkaline fuel cell application [J]. CIESC Journal, 2021, 72(S1): 42-52. |
[13] | ZHU Xiaobing, LI Jiajia, LI Yining, YANG Hongyue, LI Xiaosong, LIU Jinglin. Oxygen evolution reaction over manganese oxides and the electrode-solution interface [J]. CIESC Journal, 2021, 72(S1): 398-405. |
[14] | XU Bin. Parameter optimal identification of proton exchange membrane fuel cell model based on an improved differential evolution algorithm [J]. CIESC Journal, 2021, 72(3): 1512-1520. |
[15] | GUO Jianing, XIANG Zhonghua. Progress of metal macrocyclic compound-based oxygen reduction electrocatalysts [J]. CIESC Journal, 2021, 72(1): 384-397. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||