CIESC Journal ›› 2021, Vol. 72 ›› Issue (1): 384-397.DOI: 10.11949/0438-1157.20201256
• Reviews and monographs • Previous Articles Next Articles
GUO Jianing1,2(),XIANG Zhonghua1(
)
Received:
2020-09-04
Revised:
2020-11-03
Online:
2021-01-05
Published:
2021-01-05
Contact:
XIANG Zhonghua
通讯作者:
向中华
作者简介:
郭佳宁(1991—),女,博士,讲师,基金资助:
CLC Number:
GUO Jianing, XIANG Zhonghua. Progress of metal macrocyclic compound-based oxygen reduction electrocatalysts[J]. CIESC Journal, 2021, 72(1): 384-397.
郭佳宁, 向中华. 金属大环化合物基氧还原电催化剂的研究进展[J]. 化工学报, 2021, 72(1): 384-397.
1 | Zhou T, Zhang N, Wu C, et al. Surface/interface nanoengineering for rechargeable Zn-air batteries[J]. Energy Environ. Sci., 2020, 13(4): 1132-1153. |
2 | Zhao C X, Li B Q, Liu J N, et al. Intrinsic electrocatalytic activity regulation of M-N-C single-atom catalysts for oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2020, 59: 2-18. |
3 | Wu M, Cui M, Wu L, et al. Hierarchical polyelemental nanoparticles as bifunctional catalysts for oxygen evolution and reduction reactions[J]. Adv. Energy Mater., 2020, 10: 2001119. |
4 | He Y, Hwang S, Cullen D A, et al. Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy[J]. Energy Environ. Sci., 2019, 12(1): 250-260. |
5 | Ouyang C, Wang X. Recent progress in pyrolyzed carbon materials as electrocatalysts for the oxygen reduction reaction[J]. Inorg. Chem. Front., 2020, 7(1): 28-36. |
6 | Singh H, Zhuang S, Ingis B, et al. Carbon-based catalysts for oxygen reduction reaction: a review on degradation mechanisms[J]. Carbon, 2019, 151: 160-174. |
7 | Zagal J H, Koper M T M. Reactivity descriptors for the activity of molecular MN4 catalysts for the oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2016, 55(47): 14510-4521. |
8 | Wang X, Jia Y, Mao X, et al. Edge-rich Fe-N4 active sites in defective carbon for oxygen reduction catalysis[J]. Adv. Mater., 2020, 32(16): 2000966. |
9 | Liu Q, Li Y, Zheng L, et al. Sequential synthesis and active‐site coordination principle of precious metal single‐atom catalysts for oxygen reduction reaction and PEM fuel cells[J]. Adv. Energy Mater., 2020, 10(20): 2000689. |
10 | Zhao Y M, Yu G Q, Wang F F, et al. Bioinspired transition-metal complexes as electrocatalysts for the oxygen reduction reaction[J]. Chemistry, 2019, 25(15): 3726-3739. |
11 | Zhang S L, Guan B Y, Lou X W. Co-Fe alloy/N-doped carbon hollow spheres derived from dual metal-organic frameworks for enhanced electrocatalytic oxygen reduction[J]. Small, 2019, 15(13):1805324. |
12 | Zhang G, Sebastián D, Zhang X, et al. Engineering of a low‐cost, highly active, and durable tantalate-graphene hybrid electrocatalyst for oxygen reduction[J]. Adv. Energy Mater., 2020, 10: 2000075. |
13 | Xue J, Li Y, Hu J. Nanoporous bimetallic Zn/Fe-N-C for efficient oxygen reduction in acidic and alkaline media[J]. J. Mater. Chem. A, 2020, 8(15): 7145-7157. |
14 | Asset T, Atanassov P. Iron-nitrogen-carbon catalysts for proton exchange membrane fuel cells[J]. Joule, 2020, 4(1): 33-44. |
15 | Wang X X, Swihart M T, Wu G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation[J]. Nat. Catal., 2019, 2(7): 578-589. |
16 | Zhang N, Zhou T, Chen M, et al. High-purity pyrrole-type FeN4 sites as a superior oxygen reduction electrocatalyst[J]. Energy Environ. Sci., 2020, 13(1): 111-118. |
17 | Mu C, Mao J, Guo J, et al. Rational design of spinel cobalt vanadate oxide Co2VO4 for superior electrocatalysis[J]. Adv. Mater., 2020, 32(10): 1907168. |
18 | Lang P, Yuan N, Jiang Q, et al. Recent advances and prospects of metal‐based catalysts for oxygen reduction reaction[J]. Energy Technol., 2020, 8(3): 1900984. |
19 | Hu C, Lin Y, Connell J W, et al. Carbon-based metal-free catalysts for energy storage and environmental remediation[J]. Adv. Mater., 2019, 31(13): 1806128. |
20 | Radecka-Paryzek W, Patroniak V, Lisowski J. Metal complexes of polyaza and polyoxaaza Schiff base macrocycles[J]. Coord. Chem. Rev., 2005, 249(21-22): 2156-2175. |
21 | Jasinski R. A new fuel cell cathode catalyst[J]. Nature, 1964, 201(4925): 1212-1213. |
22 | Das P K, Chatterjee S, Samanta S, et al. EPR, resonance Raman, and DFT calculations on thiolate- and imidazole-bound iron(Ⅲ) porphyrin complexes: role of the axial ligand in tuning the electronic structure[J]. Inorg. Chem., 2012, 51(20): 10704-10714. |
23 | Kadish K M, Fre´mond L, Ou Z, et al. Cobalt(Ⅲ) corroles as electrocatalysts for the reduction of dioxygen: reactivity of a monocorrole, biscorroles, and porphyrin-corrole dyads[J]. J. Am. Chem. Soc., 2005, 127(15): 5625-5631. |
24 | Feng Y, Alonso-Vante N. Nonprecious metal catalysts for the molecular oxygen-reduction reaction[J]. Phys. Status Solidi (B), 2008, 245 (9): 1792-1806. |
25 | Baranton S, Coutanceau C, Roux C, et al. Oxygen reduction reaction in acid medium at iron phthalocyanine dispersed on high surface area carbon substrate: tolerance to methanol, stability and kinetics[J]. J. Electroanal. Chem., 2005, 577(2): 223-234. |
26 | Yu E H, Cheng S, Logan B E, et al. Electrochemical reduction of oxygen with iron phthalocyanine in neutral media[J]. J. Appl. Electrochem., 2009, 39(5): 705-711. |
27 | Zhang W, Lai W, Cao R. Energy-related small molecule activation reactions: oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin- and corrole-based systems[J]. Chem. Rev., 2017, 117(4): 3717-3797. |
28 | Abarca G, Viera M, Aliaga C, et al. In search of the most active MN4 catalyst for the oxygen reduction reaction. The case of perfluorinated Fe phthalocyanine[J]. J. Mater. Chem. A, 2019, 7(43): 24776-24783. |
29 | Gewirth A A, Thorum M S. Electroreduction of dioxygen for fuel-cell applications: materials and challenges[J]. Inorg. Chem., 2010, 49(8): 3557-3566. |
30 | Li W, Yu A, Higgins D C, et al. Biologically inspired highly durable iron phthalocyanine catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells[J]. J. Am. Chem. Soc., 2010, 132(48): 17056-17058. |
31 | Zagal J H, Javier Recio F, Gutierrez C A, et al. Towards a unified way of comparing the electrocatalytic activity MN4 macrocyclic metal catalysts for O2 reduction on the basis of the reversible potential of the reaction[J]. Electrochem. Commun., 2014, 41: 24-26. |
32 | Yamazaki S. Metalloporphyrins and related metallomacrocycles as electrocatalysts for use in polymer electrolyte fuel cells and water electrolyzers[J]. Coord. Chem. Rev., 2018, 373: 148-166. |
33 | Zagal J H, Koper M T M. Reactivity descriptors for the activity of molecular MN4 catalysts for the oxygen reduction reaction[J]. Angew.Chem. Int. Ed., 2016, 55(47): 14510-14521. |
34 | Zhang C, Mahmood N, Yin H, et al. Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries[J]. Adv. Mater., 2013, 25(35): 4932-4937. |
35 | Zagal J H, Griveau S, Silva J F, et al. Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions[J]. Coord. Chem. Rev., 2010, 254(23/24): 2755-2791. |
36 | Kong A, Dong B, Zhu X, et al. Ordered mesoporous Fe-porphyrin-like architectures as excellent cathode materials for the oxygen reduction reaction in both alkaline and acidic media[J]. Chem.-Eur. J., 2013, 19(48): 16170-16175. |
37 | Tang H, Zeng Y, Zeng Y, et al. Iron-embedded nitrogen doped carbon frameworks as robust catalyst for oxygen reduction reaction in microbial fuel cells[J]. Appl. Catal. B-Environ., 2017, 202: 550-556. |
38 | Jiao L, Wan G, Zhang R, et al. From metal-organic frameworks to single-atom Fe implanted N-doped porous carbons: efficient oxygen reduction in both alkaline and acidic media[J]. Angew. Chem. Int. Ed., 2018, 57(28): 8525-8529. |
39 | 赵云, 向中华. 微流控制备金属/共价有机框架功能材料研究进展[J]. 化工学报, 2020, 71(6): 2547-2563. |
Zhao Y, Xiang Z H. Progress of microfluidic synthesis of metal/covalent organic frameworks[J]. CIESC Journal, 2020, 71(6): 2547-2563. | |
40 | Chen L, Yang Y, Guo Z, et al. Highly efficient activation of molecular oxygen with nanoporous metalloporphyrin frameworks in heterogeneous systems[J]. Adv. Mater., 2011, 23(28): 3149-3154. |
41 | Peng P, Zhou Z H, Guo J N, et al. Well-defined 2D covalent organic polymers for energy electrocatalysis[J]. ACS Energy Lett., 2017, 2(6): 1308-1314. |
42 | Wan G, Fu Y A, Guo J N, et al. Photoelectronic porous covalent organic materials: research progress and perspective[J]. Acta Chim. Sin., 2015, 73(6): 557-578. |
43 | Xiang Z H, Xue Y H, Cao D P, et al. Highly efficient electrocatalysts for oxygen reduction based on 2D covalent organic polymers complexed with non-precious metals[J]. Angew. Chem. Int. Ed., 2014, 53(9): 2433-2437. |
44 | Guo J N, Li Y, Cheng Y H, et al. Highly efficient oxygen reduction reaction electrocatalysts synthesized under nanospace confinement of metal-organic framework[J]. ACS Nano, 2017, 11(8): 8379-8386. |
45 | Guo J N, Cheng Y H, Xiang Z H. Confined-space-assisted preparation of Fe3O4-nanoparticle-modified Fe-N-C catalysts derived from a covalent organic polymer for oxygen reduction[J]. ACS Sustain. Chem. Eng., 2017, 5(9): 7871-7877. |
46 | Wu Z S, Chen L, Liu J, et al. High-performance electrocatalysts for oxygen reduction derived from cobalt porphyrin-based conjugated mesoporous polymers[J]. Adv. Mater., 2014, 26(9): 1450-1455. |
47 | Kramm U I, Abs-Wurmbach I, Herrmann-Geppert I, et al. Influence of the electron-density of FeN4-centers towards the catalytic activity of pyrolyzed FeTMPPCl-based ORR-electrocatalysts[J]. J. Electrochem. Soc., 2011, 158 (1): B69-B78. |
48 | Kalvelage H, Mecklenburg A, Kunz U, et al. Electrochemical reduction of oxygen at pyrolyzed iron and cobalt N4-chelates on carbon black supports[J]. Chem. Eng. Technol., 2000, 23(9): 803-807. |
49 | Türk K K, Kruusenberg I, Mondal J, et al. Oxygen electroreduction on MN4-macrocycle modified graphene/multi-walled carbon nanotube composites[J]. J. Electroanal. Chem., 2015, 756: 69-76. |
50 | Praats R, Kruusenberg I, Käärik M, et al. Electroreduction of oxygen in alkaline solution on iron phthalocyanine modified carbide-derived carbons[J]. Electrochim. Acta, 2019, 299: 999-1010. |
51 | Sa Y J, Seo D J, Woo J, et al. A general approach to preferential formation of active Fe-Nx sites in Fe-N/C electrocatalysts for efficient oxygen reduction reaction[J]. J. Am. Chem. Soc., 2016, 138(45): 15046-15056. |
52 | Dong L, Zang J, Wang W, et al. Electrospun single iron atoms dispersed carbon nanofibers as high performance electrocatalysts toward oxygen reduction reaction in acid and alkaline media[J]. J. Colloid Interface Sci., 2020, 564: 134-142. |
53 | Jin X, Xie Y, Wang L, et al. Highly efficient oxygen reduction reaction electrocatalysts FeCo-N-C derived from two metallomacrocycles and N‐doped porous carbon materials[J]. ChemElectroChem, 2020, 7(3): 865-872. |
54 | Jaouen F, Dodelet J P. Non-noble electrocatalysts for O2 reduction: how does heat treatment affect their activity and structure? Part I. Model for carbon black gasification by NH3: parametric calibration and electrochemical validation[J]. J. Phys. Chem. C, 2007, 111(16): 5963-5970. |
55 | Wei P J, Yu G Q, Naruta Y, et al. Covalent grafting of carbon nanotubes with a biomimetic heme model compound to enhance oxygen reduction reactions[J]. Angew. Chem. Int. Ed., 2014, 53(26): 6659-6663. |
56 | Mi C X, Peng P, Xiang Z H. Pyrolysis-free approach towards synthesis of oxygen reduction electrocatalysts[J]. Chin. Sci. Bull., 2020, 65(14): 1348-1357. |
57 | Koslowski U I, Abs-Wurmbach I, Fiechter S, et al. Nature of the catalytic centers of porphyrin-based electrocatalysts for the ORR: a correlation of kinetic current density with the site density of Fe-N4 centers[J]. J. Phys. Chem. C, 2008, 112(39): 15356-15366. |
58 | Cao R, Thapa R, Kim H, et al. Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst[J]. Nat. Commun., 2013, 4(1): 1-7. |
59 | Kong J, Cheng W. Recent advances in the rational design of electrocatalysts towards the oxygen reduction reaction[J]. Chin. J. Catal., 2017, 38(6): 951-969. |
60 | Kang D, Wang B, Wang X, et al. Stably dispersed metallophthalocyanine noncovalently bonded to multiwalled carbon nanotubes for ammonia sensing at room temperature[J]. Sens. Actuator B-Chem., 2017, 246: 262-270. |
61 | Morozan A, Campidelli S, Filoramo A, et al. Catalytic activity of cobalt and iron phthalocyanines or porphyrins supported on different carbon nanotubes towards oxygen reduction reaction[J]. Carbon, 2011, 49(14): 4839-4847. |
62 | Liu R, von Malotki C, Arnold L, et al. Triangular trinuclear metal-N4 complexes with high electrocatalytic activity for oxygen reduction[J]. J. Am. Chem. Soc., 2011, 133(27): 10372-10375. |
63 | Selvaraju K. Assembly of favorable 2D Co-N4-based polymer nanosheets for proficient oxygen reduction reaction[J]. Ionics, 2019, 25(12): 5939-5947. |
64 | Mihara N, Yamada Y, Takaya H, et al. Oxygen reduction to water by a cofacial dimer of iron(Ⅲ)-porphyrin and iron(Ⅲ)-phthalocyanine linked through a highly flexible fourfold rotaxane[J]. Chem. Eur. J., 2017, 23(31): 7508-7514. |
65 | Liu W, Hou Y, Pan H, et al. An ethynyl-linked Fe/Co heterometallic phthalocyanine conjugated polymer for the oxygen reduction reaction[J]. J. Mater. Chem. A, 2018, 6(18): 8349-8357. |
66 | Peng P, Shi L, Huo F, et al. In-situ charge exfoliated soluble covalent organic framework directly used for Zn-air flow battery[J]. ACS Nano, 2019, 13(1): 878-884. |
67 | Yang S, Yu Y, Dou M, et al. Two-dimensional conjugated aromatic networks as high-site-density and single-atom electrocatalysts for the oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2019, 131(41): 14866-14872. |
68 | Okunola A, Kowalewska B, Bron M, et al. Electrocatalytic reduction of oxygen at electropolymerized films of metalloporphyrins deposited onto multi-walled carbon nanotubes[J]. Electrochim. Acta, 2009, 54(7): 1954-1960. |
69 | Okunola A O, Nagaiah T C, Chen X, et al. Visualization of local electrocatalytic activity of metalloporphyrins towards oxygen reduction by means of redox competition scanning electrochemical microscopy (RC-SECM)[J]. Electrochim. Acta, 2009, 54(22): 4971-4978. |
70 | Kruusenberg I, Mondal J, Matisen L, et al. Oxygen reduction on graphene-supported MN4 macrocycles in alkaline media[J]. Electrochem. Commun., 2013, 33: 18-22. |
71 | Sonkar P K, Prakash K, Yadav M, et al. Co(Ⅱ)-porphyrin-decorated carbon nanotubes as catalysts for oxygen reduction reactions: an approach for fuel cell improvement[J]. J. Mater. Chem. A, 2017, 5(13): 6263-6276. |
72 | Hijazi I, Bourgeteau T, Cornut R, et al. Carbon nanotube-templated synthesis of covalent porphyrin network for oxygen reduction reaction[J]. J. Am. Chem. Soc., 2014, 136(17): 6348-6354. |
73 | Tang H, Yin H, Wang J, et al. Molecular architecture of cobalt porphyrin multilayers on reduced graphene oxide sheets for high-performance oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2013, 125(21): 5695-5699. |
74 | Wang X, Wang B, Zhong J, et al. Iron polyphthalocyanine sheathed multiwalled carbon nanotubes: a high-performance electrocatalyst for oxygen reduction reaction[J]. Nano Res., 2016, 9(5): 1497-1506. |
75 | Kumar A, Vashistha V K. Design and synthesis of CoIIHMTAA-14/16 macrocycles and their nano-composites for oxygen reduction electrocatalysis[J]. RSC Adv., 2019, 9(23): 13243-13248. |
76 | Liu W, Wang C, Zhang L, et al. Exfoliation of amorphous phthalocyanine conjugated polymers into ultrathin nanosheets for highly efficient oxygen reduction[J]. J. Mater. Chem. A, 2019, 7(7): 3112-3119. |
77 | Vashistha V K, Kumar A. Design and synthesis of MnN4 macrocyclic complex for efficient oxygen reduction reaction electrocatalysis[J]. Inorg. Chem. Commun., 2020, 112: 107700. |
78 | Guo J N, Lin C Y, Xia Z H, et al. A pyrolysis-free covalent organic polymer for oxygen reduction[J]. Angew. Chem. Int. Ed., 2018, 57(38): 12567-12572. |
79 | Peng P, Shi L, Huo F, et al. A pyrolysis-free path toward superiorly catalytic nitrogen-coordinated single atom[J]. Sci. Adv., 2019, 5(8): eaaw2322. |
80 | Jahan M, Bao Q, Loh K P. Electrocatalytically active graphene-porphyrin MOF composite for oxygen reduction reaction[J]. J. Am. Chem. Soc., 2012, 134(15): 6707-6713. |
81 | Zhong X, Liu L, Wang X, et al. A radar-like iron based nanohybrid as an efficient and stable electrocatalyst for oxygen reduction[J]. J. Mater. Chem. A, 2014, 2(19): 6703-6707. |
82 | Tang J, Ou Z, Guo R, et al. Functionalized cobalt triarylcorrole covalently bonded with graphene oxide: a selective catalyst for the two- or four-eectron reduction of oxygen[J]. Inorg. Chem., 2017, 56(15): 8954-8963. |
83 | Zuo Q, Cheng G, Luo W. A reduced graphene oxide/covalent cobalt porphyrin framework for efficient oxygen reduction reaction[J]. Dalton Trans., 2017, 46(29): 9344-9348. |
[1] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[2] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[3] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[4] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[5] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[6] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[7] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[8] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[9] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[10] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[11] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[12] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[13] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[14] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[15] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||