CIESC Journal ›› 2020, Vol. 71 ›› Issue (4): 1781-1790.DOI: 10.11949/0438-1157.20190924
• Energy and environmental engineering • Previous Articles Next Articles
Xiaoyan LIU1(),Wanxin CAI1,Likun ZHAO1,Xiang ZENG2,Xuhui MAO1()
Received:
2019-08-12
Revised:
2019-10-27
Online:
2020-04-05
Published:
2020-04-05
Contact:
Xuhui MAO
通讯作者:
毛旭辉
作者简介:
刘小艳(1994—),女,硕士研究生,基金资助:
CLC Number:
Xiaoyan LIU, Wanxin CAI, Likun ZHAO, Xiang ZENG, Xuhui MAO. Failure mechanism and thermal regeneration of activated carbon for free chlorine removal[J]. CIESC Journal, 2020, 71(4): 1781-1790.
刘小艳, 蔡万欣, 赵立坤, 曾香, 毛旭辉. 活性炭去除游离氯的失效机制及热再生研究[J]. 化工学报, 2020, 71(4): 1781-1790.
Add to citation manager EndNote|Ris|BibTeX
样品 | 比表面积/ (m2?g-1) | 孔容/(cm3?g-1) | 微孔/(cm3?g-1) | 中孔/(cm3?g-1) | 平均粒径/nm | 元素分析/% | ||
---|---|---|---|---|---|---|---|---|
C | H | N | ||||||
B-AC | 1512.2 | 0.7128 | 0.665 | 0.0478 | 1.8855 | 73.45 | 1.67 | 0.09 |
A-AC | 999.1 | 0.4845 | 0.447 | 0.0375 | 1.9399 | 63.60 | 2.11 | 0.05 |
N2-AC | 1289.8 | 0.616 | 0.588 | 0.028 | 1.9102 | 66.76 | 2.66 | 0.10 |
H2-AC | 645.93 | 0.3168 | 0.3014 | 0.0154 | 1.9617 | 76.70 | 1.45 | 0.07 |
NH3-AC | 1186.9 | 0.5608 | 0.5355 | 0.0253 | 1.8899 | 67.88 | 1.98 | 1.35 |
Table 1 Surface structure characteristics of activated carbon
样品 | 比表面积/ (m2?g-1) | 孔容/(cm3?g-1) | 微孔/(cm3?g-1) | 中孔/(cm3?g-1) | 平均粒径/nm | 元素分析/% | ||
---|---|---|---|---|---|---|---|---|
C | H | N | ||||||
B-AC | 1512.2 | 0.7128 | 0.665 | 0.0478 | 1.8855 | 73.45 | 1.67 | 0.09 |
A-AC | 999.1 | 0.4845 | 0.447 | 0.0375 | 1.9399 | 63.60 | 2.11 | 0.05 |
N2-AC | 1289.8 | 0.616 | 0.588 | 0.028 | 1.9102 | 66.76 | 2.66 | 0.10 |
H2-AC | 645.93 | 0.3168 | 0.3014 | 0.0154 | 1.9617 | 76.70 | 1.45 | 0.07 |
NH3-AC | 1186.9 | 0.5608 | 0.5355 | 0.0253 | 1.8899 | 67.88 | 1.98 | 1.35 |
样品 | 表面官能团/(mmol?g-1) | ||||
---|---|---|---|---|---|
—OH | —COOR | —COOH | 酸性 官能团 | 碱性 官能团 | |
B-AC | 0.07 | 0.22 | 0.07 | 0.36 | 0.55 |
A-AC | 1.12 | 1.17 | 2.17 | 4.49 | 0.35 |
N2-AC | 0.37 | 0.07 | — | 0.44 | 0.45 |
H2-AC | 0.12 | 0.05 | 0.04 | 0.22 | 0.50 |
NH3-AC | 0.16 | 0.17 | — | 0.34 | 0.71 |
Table 2 Results of surface functional groups of activated carbon
样品 | 表面官能团/(mmol?g-1) | ||||
---|---|---|---|---|---|
—OH | —COOR | —COOH | 酸性 官能团 | 碱性 官能团 | |
B-AC | 0.07 | 0.22 | 0.07 | 0.36 | 0.55 |
A-AC | 1.12 | 1.17 | 2.17 | 4.49 | 0.35 |
N2-AC | 0.37 | 0.07 | — | 0.44 | 0.45 |
H2-AC | 0.12 | 0.05 | 0.04 | 0.22 | 0.50 |
NH3-AC | 0.16 | 0.17 | — | 0.34 | 0.71 |
结合能/eV | B-AC | A-AC | N2-AC | H2-AC | NH3-AC | ||
---|---|---|---|---|---|---|---|
C 1s | C—C | 284.8 | 71.03 | 56.33 | 60.23 | 61.04 | 57.71 |
C—O | 286.0 | 16.23 | 14.42 | 17.60 | 8.89 | 11.23 | |
CO | 287.4 | 0.22 | 1.31 | 0.07 | 3.21 | 6.89 | |
—O—CO | 288.8 | 2.39 | 7.42 | 3.85 | 2.90 | 2.12 | |
总原子C/% | 89.87 | 79.47 | 87.79 | 81.53 | 79.82 | ||
O 1s | CO | 531.0~531.9 | 4.81 | 10.92 | 8.16 | 5.65 | 5.8 |
C—O | 533.0~533.4 | 4.89 | 7.42 | 7.26 | 4.34 | 6.33 | |
H2O | 535.2~535.4 | 0 | 1.51 | 2.50 | 1.73 | 2.18 | |
总原子O/% | 9.70 | 19.86 | 17.92 | 11.73 | 14.31 | ||
O/C比 | 0.11 | 0.25 | 0.13 | 0.22 | 0.18 |
Table 3 Deconvolution of XPS C1s/O1s region (corrected to total oxygen atomic percent)/%(atom)
结合能/eV | B-AC | A-AC | N2-AC | H2-AC | NH3-AC | ||
---|---|---|---|---|---|---|---|
C 1s | C—C | 284.8 | 71.03 | 56.33 | 60.23 | 61.04 | 57.71 |
C—O | 286.0 | 16.23 | 14.42 | 17.60 | 8.89 | 11.23 | |
CO | 287.4 | 0.22 | 1.31 | 0.07 | 3.21 | 6.89 | |
—O—CO | 288.8 | 2.39 | 7.42 | 3.85 | 2.90 | 2.12 | |
总原子C/% | 89.87 | 79.47 | 87.79 | 81.53 | 79.82 | ||
O 1s | CO | 531.0~531.9 | 4.81 | 10.92 | 8.16 | 5.65 | 5.8 |
C—O | 533.0~533.4 | 4.89 | 7.42 | 7.26 | 4.34 | 6.33 | |
H2O | 535.2~535.4 | 0 | 1.51 | 2.50 | 1.73 | 2.18 | |
总原子O/% | 9.70 | 19.86 | 17.92 | 11.73 | 14.31 | ||
O/C比 | 0.11 | 0.25 | 0.13 | 0.22 | 0.18 |
时间/d | 游离氯/活性炭/ (mg?g-1) | B-AC 出水游离氯/ (mg?L-1) | N2-AC出水游离氯/ (mg?L-1) | NH3-AC出水游离氯/(mg?L-1) |
---|---|---|---|---|
0 | 0 | 0 | 0 | 0 |
3 | 172.8 | 0.6 | 0.2 | 0.4 |
6 | 345.2 | 1.4 | 0 | 0 |
7 | 403.2 | 0.4 | 2.4 | 0.2 |
10 | 576 | 0.4 | 2.8 | 0.4 |
11 | 633.6 | 0.2 | 4.2 | 1.2 |
14 | 806.4 | 0.6 | 6.8 | 2 |
15 | 864 | 8.6 | — | — |
17 | 979.2 | 29.2 | 6.7 | 2.8 |
Table 4 Column experimental results of original activated carbon and thermal-regenerated activated carbon
时间/d | 游离氯/活性炭/ (mg?g-1) | B-AC 出水游离氯/ (mg?L-1) | N2-AC出水游离氯/ (mg?L-1) | NH3-AC出水游离氯/(mg?L-1) |
---|---|---|---|---|
0 | 0 | 0 | 0 | 0 |
3 | 172.8 | 0.6 | 0.2 | 0.4 |
6 | 345.2 | 1.4 | 0 | 0 |
7 | 403.2 | 0.4 | 2.4 | 0.2 |
10 | 576 | 0.4 | 2.8 | 0.4 |
11 | 633.6 | 0.2 | 4.2 | 1.2 |
14 | 806.4 | 0.6 | 6.8 | 2 |
15 | 864 | 8.6 | — | — |
17 | 979.2 | 29.2 | 6.7 | 2.8 |
20 | Perrard A, Retailleau L, Berjoan R, et al. Liquid phase oxidation kinetics of an ex-cellulose activated carbon cloth by NaOCl[J]. Carbon, 2012, 50(6): 2226-2234. |
21 | Guedidi H, Reinert L, Leveque J M, et al. The effects of the surface oxidation of activated carbon, the solution pH and the temperature on adsorption of ibuprofen[J]. Carbon, 2013, 54: 432-443. |
22 | Pereira M F R, Soares S F, Orfao J J M, et al. Adsorption of dyes on activated carbons: influence of surface chemical groups[J]. Carbon, 2003, 41(4): 811-821. |
23 | Menendez J A, Phillips J, Xia B, et al. On the modification and characterization of chemical surface properties of activated carbon: in the search of carbons with stable basic properties[J]. Langmuir, 1996, 12(18): 4404-4410. |
24 | Mangun C L, Benak K R, Economy J, et al. Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia[J]. Carbon, 2001, 39(12): 1809-1820. |
25 | 李霞, 陈思莉, 卓琼芳, 等. 热改性活性炭吸附甲萘威的性能[J]. 安全与环境学报, 2017, 17(5): 1915-1921. |
Li X, Chen S L, Zhuo Q F, et al. On the adsorptive performance of carbaryl onto the activated carbons with the thermal treatment[J]. Journal of Safety and Environment, 2017, 17(5): 1915-1921. | |
26 | Torrellas S A, Lovera R G, Escalona N, et al. Chemical-activated carbons from peach stones for the adsorption of emerging contaminants in aqueous solutions[J]. Chemical Engineering Journal, 2015, 279: 788-798. |
27 | Vassallo A M, Attalla M I. Studies of thermal transformations of fulvic acids using Fourier transform-infrared emission spectroscopy[J]. Journal of Analytical and Applied Pyrolysis, 1992, 23(1): 73-85. |
28 | Lua A C, Yang T. Effects of vacuum pyrolysis conditions on the characteristics of activated carbons derived from pistachio-nut shells[J]. Journal of Colloid and Interface Science, 2004, 276(2): 364-372. |
29 | Yang S Y, Li L, Xiao T, et al. Role of surface chemistry in modified ACF (activated carbon fiber)-catalyzed peroxymonosulfate oxidation[J]. Applied Surface Science, 2016, 383: 142-150. |
30 | Pradhan B K, Sandle N K. Effect of different oxidizing agent treatments on the surface properties of activated carbons[J]. Carbon, 1999, 37(8): 1323-1332. |
1 | 张怀旭, 刘婉冬, 李冰璟, 等. 活性炭去除水中余氯的研究[J]. 环境污染与防治, 2008, 30(5): 63-68. |
Zhang H X, Liu W D, Li B J, et al. Activated carbon treatment for removing residual free chlorine in water[J]. Environmental Pollution and Control, 2008, 30(5): 63-68. | |
31 | Aviles F, Cauich-Rodriguez J V, Moo-Tah L, et al. Evaluation of mild acid oxidation treatments for MWCNT functionalization[J]. Carbon, 2009, 47(13): 2970-2975. |
32 | Kabel K I, Farag A A, Elnaggar E M, et al. Removal of oxidation fragments from multi-walled carbon nanotubes oxide using high and low concentrations of sodium hydroxide[J]. Arabian Journal for Science and Engineering, 2016, 41(6): 2211-2220. |
2 | Gopal K, Tripathy S S, Bersillon J L, et al. Chlorination byproducts, their toxicodynamics and removal from drinking water[J]. Journal of Hazardous Materials, 2007, 140(1/2): 1-6. |
3 | Simate G S, Iyuke S E, Ndlovu S, et al. Human health effects of residual carbon nanotubes and traditional water treatment chemicals in drinking water[J]. Environment International, 2012, 39(1): 38-49. |
4 | Jaguaribe E F, Medeiros L L, Barreto M C S, et al. The performance of activated carbons from sugarcane bagasse, babassu, and coconut shells in removing residual chlorine[J]. Brazilian Journal of Chemical Engineering, 2005, 22(1): 41-47. |
5 | 王丽萍, 徐斌, 钱灏. 净水用颗粒活性炭对水中余氯去除的动力学原理效能[J]. 净水技术, 2018, 39(1): 45-52. |
Wang L P, Xu B, Qian H. Principle and efficiency of residual chlorine removal by granular activated carbon in drinking water[J]. Water Purification Technology, 2018, 39(1): 47-52. | |
6 | Martin R J, Shackleton R C. Comparison of two partially activated carbon fabrics for the removal of chlorine and other impurities from water[J]. Water Research, 1990, 24(2): 474-484. |
7 | Asada T, Okazaki A, Kawata K, et al. Influence of pore properties and solution pH on removal of free chlorine and combined chlorine by porous carbon[J]. Journal of Health Science, 2009, 55(4): 649-656. |
8 | Ogata F, Tominaga H, Ueda A, et al. Application of activated carbons from coal and coconut shell for removing free residual chlorine[J]. Journal of Oleo Science, 2013, 62(4): 241-244. |
9 | 邹萍, 隋贤栋, 黄肖容. 铜锌改性活性炭的制备及对水中余氯的去除[J]. 材料开发与应用, 2009, 24(4): 48-50. |
Zou P, Sui X D, Huang X R. Cu-Zn modified activated carbon: preparation and function in removing of chlorine residue[J]. Development and Application of Materials, 2009, 24(4): 48-50. | |
10 | Suidan M T, Cross W H, Chacey K A. Extended dechlorination studies with granular activated carbon filters[J]. Journal Water Pollution Control Federation, 1980, 52(11): 2634-2646. |
11 | Salvador F, Martin-Sanchez N, Sanchez-Hernandez R, et al. Regeneration of carbonaceous adsorbents(I): Thermal regeneration[J]. Microporous and Mesoporous Materials, 2015, 202: 259-276. |
12 | 吉中伟. 几种活性炭再生技术的比较[J]. 科技技术创新, 2017, (36): 200-201. |
Ji Z W. Comparison of several activated carbon regeneration technologies[J]. Scientific and Technological Innovation, 2017, (36): 200-201. | |
13 | 李立清, 顾庆伟, 石瑞, 等. 热改性活性炭吸附有机气体的性能[J]. 化工学报, 2012, 63(6): 1749-1756. |
Li L Q, Gu Q W, Shi R, et al. Adsorption of VOCs onto activated carbons with thermal treatment[J]. CIESC Journal, 2012, 63(6): 1749-1756. | |
14 | Przepiorski J. Enhanced adsorption of phenol from water by ammonia-treated activated carbon[J]. Journal of Hazardous Materials, 2006, 135(1/2/3): 453-456. |
15 | Mangun C L, Benak K R, Economy J, et al. Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia[J]. Carbon, 2001, 39: 1809-1820. |
16 | Boehm H P. Surface oxides on carbon and their analysis: a critical assessment[J]. Carbon, 2002, 40(2): 145-149. |
17 | Boehm H P. Some aspects of the surface-chemistry of carbon-blacks and other carbons[J]. Carbon, 1994, 32(5): 759-769. |
18 | Meng F K, Li G P, Zhang B B, et al. Chemical kinetics and particle size effects of activated carbon for free chlorine removal from drinking water[J]. Water Practice and Technology, 2018, 14: 19-26. |
19 | Wang Z W, Shirley M D, Meikle S T, et al. The surface acidity of acid oxidised multi-walled carbon nanotubes and the influence of in-situ generated fulvic acids on their stability in aqueous dispersions[J]. Carbon, 2009, 47(1): 73-79. |
[1] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[2] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[3] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[4] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[5] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[6] | Jianhua ZHANG, Mengmeng CHEN, Yawen SUN, Yongzhen PENG. Efficient nitrogen and phosphorus removal from domestic wastewater via simultaneous partial nitritation and phosphorus removal combined Anammox [J]. CIESC Journal, 2023, 74(5): 2147-2156. |
[7] | Ruizhe CHEN, Leilei CHENG, Jing GU, Haoran YUAN, Yong CHEN. Research progress in chemical recovery technology of fiber-reinforced polymer composites [J]. CIESC Journal, 2023, 74(3): 981-994. |
[8] | Yu PAN, Zihang WANG, Jiayun WANG, Ruzhu WANG, Hua ZHANG. Heat and moisture performance study of Cur-LiCl coated heat exchanger [J]. CIESC Journal, 2023, 74(3): 1352-1359. |
[9] | Weiyi SU, Jiahui DING, Chunli LI, Honghai WANG, Yanjun JIANG. Research progress of enzymatic reactive crystallization [J]. CIESC Journal, 2023, 74(2): 617-629. |
[10] | Yong’an CHEN, Anning ZHOU, Yunlong LI, Zhiwei SHI, Xinfu HE, Weihong JIAO. Preparation and coal pyrolysis performance of magnetic MgFe2O4 and its core-shell catalysts [J]. CIESC Journal, 2022, 73(7): 3026-3037. |
[11] | Jinsong XU, Min LIN, Xiaoping CHEN, Jiliang MA, Pengfei GENG, Xuebing BAO, Daoyin LIU, Cai LIANG. Experimental study on regeneration characteristics of stainless steel pickling waste mixed acid by fluidized bed roaster [J]. CIESC Journal, 2022, 73(5): 2242-2250. |
[12] | Gang WANG, Xiaoping CHE, Shiyong WANG, Jieshan QIU. Carbon electrodes modified with water-soluble charged polymer binder for enhanced capacitive deionization performance [J]. CIESC Journal, 2022, 73(4): 1763-1771. |
[13] | Liwen ZHAO, Guilian LIU. Energy system integration and catalyst regeneration cycle optimization of benzene hydrogenation to cyclohexene process [J]. CIESC Journal, 2022, 73(12): 5494-5503. |
[14] | Li ZHANG, Jianhua WU, Shuhui CUI, Feng YAN, Hao SUN, Feiyue QIAN. Analysis of bacterial function in combined PN/A granular sludge and solid phase denitrification processes [J]. CIESC Journal, 2022, 73(11): 5128-5137. |
[15] | Li LIU, Peng JIANG, Wei WANG, Tonghuan ZHANG, Liwen MU, Xiaohua LU, Jiahua ZHU. Coupling process simulation and random forest model for analyzing and predicting biomass-to-hydrogen conversion [J]. CIESC Journal, 2022, 73(11): 5230-5239. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||