CIESC Journal ›› 2022, Vol. 73 ›› Issue (12): 5494-5503.DOI: 10.11949/0438-1157.20221213
• Process system engineering • Previous Articles Next Articles
Received:
2022-09-05
Revised:
2022-09-30
Online:
2023-01-17
Published:
2022-12-05
Contact:
Guilian LIU
通讯作者:
刘桂莲
作者简介:
赵丽文(1998—),女,博士研究生,zhaoliwen1234@stu.xjtu.edu.cn
基金资助:
CLC Number:
Liwen ZHAO, Guilian LIU. Energy system integration and catalyst regeneration cycle optimization of benzene hydrogenation to cyclohexene process[J]. CIESC Journal, 2022, 73(12): 5494-5503.
赵丽文, 刘桂莲. 苯加氢制环己烯装置能量系统集成及催化剂再生周期优化[J]. 化工学报, 2022, 73(12): 5494-5503.
Add to citation manager EndNote|Ris|BibTeX
流股位置 | 流股属性 | 公用工程变化量 | ||
---|---|---|---|---|
进料 | 出料 | 加热公用工程 | 冷却公用工程 | |
夹点上 | 源 | 源 | -ΔH1+ΔH2 | 0 |
源 | 阱 | |||
阱 | 源 | |||
阱 | 阱 | |||
夹点下 | 源 | 源 | 0 | ΔH1-ΔH2 |
源 | 阱 | |||
阱 | 源 | |||
阱 | 阱 | |||
跨夹点 | 源 | 源 | -ΔH3 | ΔH4-ΔH2 |
源 | 阱 | -ΔH4 | ΔH3-ΔH2 | |
阱 | 源 | ΔH2-ΔH3 | ΔH4 | |
阱 | 阱 | ΔH2-ΔH4 | ΔH3 |
Table 1 Variation of utilities along reactor parameters when the pinch position is unchanged[21]
流股位置 | 流股属性 | 公用工程变化量 | ||
---|---|---|---|---|
进料 | 出料 | 加热公用工程 | 冷却公用工程 | |
夹点上 | 源 | 源 | -ΔH1+ΔH2 | 0 |
源 | 阱 | |||
阱 | 源 | |||
阱 | 阱 | |||
夹点下 | 源 | 源 | 0 | ΔH1-ΔH2 |
源 | 阱 | |||
阱 | 源 | |||
阱 | 阱 | |||
跨夹点 | 源 | 源 | -ΔH3 | ΔH4-ΔH2 |
源 | 阱 | -ΔH4 | ΔH3-ΔH2 | |
阱 | 源 | ΔH2-ΔH3 | ΔH4 | |
阱 | 阱 | ΔH2-ΔH4 | ΔH3 |
物流 | 换热器 | 入口 温度/K | 出口 温度/K | 热容流率/ (kW∙K-1) |
---|---|---|---|---|
H1 | E101, E103 | 411.7 | 289.8 | 28.4 |
H2 | E104, E105 | 395.0 | 288.2 | 3.7 |
H3 | E106 | 454.0 | 313.2 | 10.1 |
H4 | E107 | 313.2 | 288.2 | 0.2 |
H5 | E108, E109 | 360.9 | 324.2 | 7.8 |
H6 | E302, E201, E202 | 431.2 | 337.9 | 32.0 |
H7 | E203 | 369.7 | 343.2 | 38.5 |
H8 | E303, E304 | 438.4 | 370.0 | 18.8 |
H9 | E401 | 310.5 | 310.2 | 0.6 |
H10 | E403 | 364.0 | 313.2 | 0.9 |
C1 | E101, E102 | 305.2 | 423.2 | 4.9 |
C2 | E108 | 307.0 | 333.2 | 6.0 |
C3 | E201 | 318.2 | 391.7 | 11.7 |
C4 | E304 | 353.9 | 384.8 | 41.6 |
C5 | E402 | 287.2 | 356.2 | 0.7 |
C6 | E303 | 375.2 | 400.7 | 48.1 |
C7 | E302 | 375.2 | 401.6 | 62.6 |
C8 | E301 | 375.2 | 377.2 | 3424.6 |
Table 2 Streams data of the HEN when φ=1
物流 | 换热器 | 入口 温度/K | 出口 温度/K | 热容流率/ (kW∙K-1) |
---|---|---|---|---|
H1 | E101, E103 | 411.7 | 289.8 | 28.4 |
H2 | E104, E105 | 395.0 | 288.2 | 3.7 |
H3 | E106 | 454.0 | 313.2 | 10.1 |
H4 | E107 | 313.2 | 288.2 | 0.2 |
H5 | E108, E109 | 360.9 | 324.2 | 7.8 |
H6 | E302, E201, E202 | 431.2 | 337.9 | 32.0 |
H7 | E203 | 369.7 | 343.2 | 38.5 |
H8 | E303, E304 | 438.4 | 370.0 | 18.8 |
H9 | E401 | 310.5 | 310.2 | 0.6 |
H10 | E403 | 364.0 | 313.2 | 0.9 |
C1 | E101, E102 | 305.2 | 423.2 | 4.9 |
C2 | E108 | 307.0 | 333.2 | 6.0 |
C3 | E201 | 318.2 | 391.7 | 11.7 |
C4 | E304 | 353.9 | 384.8 | 41.6 |
C5 | E402 | 287.2 | 356.2 | 0.7 |
C6 | E303 | 375.2 | 400.7 | 48.1 |
C7 | E302 | 375.2 | 401.6 | 62.6 |
C8 | E301 | 375.2 | 377.2 | 3424.6 |
活性 | 进口流股H1 | 出口流股H3 |
---|---|---|
0.75<φ≤1 | 跨夹点 | TS增加;CP不变 |
0.5<φ≤0.75 | 跨夹点 | TS不变;CP增加 |
0<φ≤0.5 | 夹点上 | TS不变;CP增加 |
Table 3 Variations of the inlet and outlet streams along catalyst activity
活性 | 进口流股H1 | 出口流股H3 |
---|---|---|
0.75<φ≤1 | 跨夹点 | TS增加;CP不变 |
0.5<φ≤0.75 | 跨夹点 | TS不变;CP增加 |
0<φ≤0.5 | 夹点上 | TS不变;CP增加 |
1 | Moulijn J A, van Diepen A E, Kapteijn F. Catalyst deactivation: is it predictable? : What to do?[J]. Applied Catalysis A: General, 2001, 212(1/2): 3-16. |
2 | 陈丙珍. 过程系统能量集成研究进展[C]// 2008年中国过程系统工程年会会议论文集. 上海, 2008: 8-13. |
Chen B Z. Progress in the energy integration of process systems[C]//Proceedings of the 2008 China Process Systems Engineering Conference. Shanghai, 2008: 8-13. | |
3 | 吕东晖, 李伟, 王鹏, 等. 催化裂化装置反应器及其能量系统的优化[J]. 石油化工, 2018, 47(4): 350-355. |
Lyu D H, Li W, Wang P, et al. Optimization of fluid catalytic cracking unit reactor and energy system[J]. Petrochemical Technology, 2018, 47(4): 350-355. | |
4 | 萧鸿华, 刘阳, 黄宏, 等. 煤制天然气过程变换单元建模与能量集成[J]. 化工进展, 2018, 37(2): 554-560. |
Xiao H H, Liu Y, Huang H, et al. Modeling and heat integration for water gas shift unit of coal to SNG process[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 554-560. | |
5 | Zhang D, Liu G L, Li Y F. Graphical optimization method for coupled heat exchanger network and reactor[J]. Energy, 2018, 156: 635-646. |
6 | Tian X, Yin C F, Lv D H, et al. Effect of catalyst deactivation on the energy consumption of gasoline-diesel hydrotreating process[J]. Energy & Fuels, 2018, 32(10): 10879-10890. |
7 | Zhang D, Hang P, Liu G L. Recycle optimization of an ethylene oxide production process based on the integration of heat exchanger network and reactor[J]. Journal of Cleaner Production, 2020, 275: 122773. |
8 | Zhao L W, Liu G L. Optimization of the catalyst service life based on the coupling of reactor and heat exchanger network[J]. Chemical Engineering Science, 2022, 259: 117822. |
9 | 袁吴魏, 姚志龙. 苯选择性加氢制备环己烯技术进展[J]. 化工进展, 2010, 29(S2): 162-169. |
Yuan W W, Yao Z L. Technical progress of benzene selective hydrogenation to cyclohexene[J]. Chemical Industry and Engineering Progress, 2010, 29(S2): 162-169. | |
10 | 肖进贤, 孙斌, 宗保宁. 苯选择加氢制环己烯负载型催化剂研究进展[J]. 石油学报(石油加工), 2014, 30(5): 934-944. |
Xiao J X, Sun B, Zong B N. Research progress of supported catalyst in selective hydrogenation of benzene to cyclohexene[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2014, 30(5): 934-944. | |
11 | 席楠, 程春晖, 李红伟, 等. 苯选择加氢制环己烯在钌基催化体系中的技术进展[J]. 精细化工, 2020, 37(12): 2457-2466. |
Xi N, Cheng C H, Li H W, et al. Technical progress of selective hydrogenation of benzene to cyclohexene in ruthenium-based catalytic system[J]. Fine Chemicals, 2020, 37(12): 2457-2466. | |
12 | Yu X L, Li Y, Xin S M, et al. Partial hydrogenation of benzene to cyclohexene on Ru@XO2 (X = Ti, Zr, or Si)[J]. Industrial & Engineering Chemistry Research, 2018, 57(6): 1961-1967. |
13 | Sun H J, Fan Y R, Sun X R, et al. Effect of ZnSO4, MnSO4 and FeSO4 on the partial hydrogenation of benzene over nano Ru-based catalysts[J]. International Journal of Molecular Sciences, 2021, 22(14): 7756. |
14 | Song Y H, Sun Z, Fan G L, et al. Regulating surface-interface structures of Zn-incorporated LiAl-LDH supported Ru catalysts for efficient benzene hydrogenation to produce cyclohexene[J]. ChemCatChem, 2022, 14(14): e202200125. |
15 | Kumbilieva K, Petrov L, Alhamed Y, et al. Reaction mechanism and deactivation modes of heterogeneous catalytic systems[J]. Chinese Journal of Catalysis, 2011, 32(3/4): 387-404. |
16 | 闫子峰, 陈诵英, 徐杰, 等. 催化反应工程[M]. 北京: 科学出版社, 2017. |
Yan Z F, Chen S Y, Xu J, et al. Catalytic Reaction Engineering[M]. Beijing: Science Press, 2017. | |
17 | 刘颖, 韩崇仁, 方维平, 等. 催化剂积炭失活宏观反应动力学的研究[J]. 催化学报, 2004, 25(2): 107-109. |
Liu Y, Han C R, Fang W P, et al. Study on reaction kinetics of coke deposition and deactivation of catalysts[J]. Chinese Journal of Catalysis, 2004, 25(2): 107-109. | |
18 | Yang Y Q, Wang H Y, Dai F, et al. Simplified catalyst lifetime prediction model for coal tar in the hydrogenation process[J]. Energy & Fuels, 2016, 30(7): 6034-6038. |
19 | Zhang Y L, Cao C X, Zhang C, et al. The study of structure-performance relationship of iron catalyst during a full life cycle for CO2 hydrogenation[J]. Journal of Catalysis, 2019, 378: 51-62. |
20 | Dey S, Dhal G C. Deactivation and regeneration of hopcalite catalyst for carbon monoxide oxidation: a review[J]. Materials Today Chemistry, 2019, 14: 100180. |
21 | Zhang D, Wang P, Liu G L. A novel sensitivity analysis method for the energy consumption of coupled reactor and heat exchanger network system[J]. Energy & Fuels, 2018, 32(6): 7210-7219. |
22 | Fogler H S. Elements of Chemical Reaction Engineering[M]. 4th ed. Upper Saddle River, NJ: Pearson Education, 2006. |
23 | 刘寿长, 郭益群, 杨新丽, 等. 液相法苯选择加氢制环己烯催化反应动力学方程[J]. 催化学报, 2003, 24(1): 42-46. |
Liu S C, Guo Y Q, Yang X L, et al. Kinetic equations for liquid-phase selective hydrogenation of benzene to cyclohexene[J]. Chinese Journal of Catalysis, 2003, 24(1): 42-46. | |
24 | 王红琴, 谢继阳, 安霓虹, 等. 钌基催化剂催化苯部分加氢制环己烯的研究进展[J]. 材料导报, 2019, 33(23): 4016-4024. |
Wang H Q, Xie J Y, An N H, et al. Advances in the ruthenium catalysts for partial hydrogenation of benzene to cyclohexene[J]. Materials Reports, 2019, 33(23): 4016-4024. | |
25 | 刘寿长, 罗鸽, 王海荣, 等. 液相法Ru-M-B/ZrO2催化苯选择加氢制环己烯反应条件的研究[J]. 催化学报, 2002, 23(4): 317-320. |
Liu S C, Luo G, Wang H R, et al. Study on operation conditions for liquid phase selective hydrogenation of benzene to cyclohexene over Ru-M-B/ZrO2 catalyst[J]. Chinese Journal of Catalysis, 2002, 23(4): 317-320. | |
26 | Sun H, Li Y, Li S, et al. Performance of Ru-Zn catalyst for selective hydrogenation of benzene to cyclohexene in a pilot plant : N poisoning and regeneration[J]. Petrochemical Technology, 2014, 43(10): 1137-1143. |
27 | 孙进, 郭蓉, 杨成敏, 等. 加氢催化剂失活因素与再生活性研究[J]. 石油炼制与化工, 2017, 48(5): 43-47. |
Sun J, Guo R, Yang C M, et al. Effects of carbon and silicon deposition on activity of hydrogenation catalyst and regeneration performance[J]. Petroleum Processing and Petrochemicals, 2017, 48(5): 43-47. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[3] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[4] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[5] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[6] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[7] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[8] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[9] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[10] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[11] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[12] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[13] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[14] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[15] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||