CIESC Journal ›› 2019, Vol. 70 ›› Issue (12): 4722-4729.DOI: 10.11949/0438-1157.20191015
• Process system engineering • Previous Articles Next Articles
Lu WANG(),Haitao MAO,Lei ZHANG(),Linlin LIU,Jian DU
Received:
2019-09-09
Revised:
2019-09-16
Online:
2019-12-05
Published:
2019-12-05
Contact:
Lei ZHANG
通讯作者:
张磊
作者简介:
王璐(1997—),女,硕士研究生,基金资助:
CLC Number:
Lu WANG, Haitao MAO, Lei ZHANG, Linlin LIU, Jian DU. Inverse machine learning-based fragrance tuned design method[J]. CIESC Journal, 2019, 70(12): 4722-4729.
王璐, 毛海涛, 张磊, 刘琳琳, 都健. 基于反向机器学习的调香设计方法[J]. 化工学报, 2019, 70(12): 4722-4729.
Add to citation manager EndNote|Ris|BibTeX
模型 | R 2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | 平均值 | |
ANN | 0.9414 | 0.8312 | 0.8578 | 0.8546 | 0.8841 | 0.8781 | 0.9378 | 0.8576 | 0.8661 | 0.8979 | 0.8807 |
SVM | 0.00004 | 0.3864 | 0.0341 | 0.0050 | 0.8381 | 0.8588 | 0.3997 | 0.0123 | 0.0638 | 0.0000 | 0.2598 |
RF | 0.0435 | 0.2041 | 0.4981 | 0.1931 | 0.6279 | 0.6386 | 0.1663 | 0.0557 | 0.5902 | 0.0000 | 0.3018 |
MLR | 0.0275 | 0.0879 | 0.0125 | 0.0505 | 0.8760 | 0.8683 | 0.3629 | 0.2398 | 0.0475 | 0.0000 | 0.2573 |
Table 1 Predictive performance of predictive models on external test set
模型 | R 2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | 平均值 | |
ANN | 0.9414 | 0.8312 | 0.8578 | 0.8546 | 0.8841 | 0.8781 | 0.9378 | 0.8576 | 0.8661 | 0.8979 | 0.8807 |
SVM | 0.00004 | 0.3864 | 0.0341 | 0.0050 | 0.8381 | 0.8588 | 0.3997 | 0.0123 | 0.0638 | 0.0000 | 0.2598 |
RF | 0.0435 | 0.2041 | 0.4981 | 0.1931 | 0.6279 | 0.6386 | 0.1663 | 0.0557 | 0.5902 | 0.0000 | 0.3018 |
MLR | 0.0275 | 0.0879 | 0.0125 | 0.0505 | 0.8760 | 0.8683 | 0.3629 | 0.2398 | 0.0475 | 0.0000 | 0.2573 |
项目 | 4-庚烯醛 (CAS No.:6728-31-0;FEMA:3289) | 惕各酸烯丙酯 (CAS No.:7493-71-2;FEMA:2043) | ||
---|---|---|---|---|
原始 | 目标 | 原始 | 目标 | |
愉悦度 | 29.2 | 29.2 | 42.13 | 42.13 |
可食用味 | 25.59 | 35.00↑ | 32 | 32 |
烘焙味 | 38.11 | 38.11 | 30.8 | 30.8 |
甜味 | 12.46 | 30.00↑ | 33.85 | 33.85 |
水果味 | 11.55 | 25.00↑ | 29.5 | 29.5 |
馊味 | 26.83 | 26.83 | 41.94 | 30.00↓ |
花香味 | 24.33 | 24.33 | 33.46 | 33.46 |
Table 2 Original and tuned odor scores of 4-heptenal and allyl tiglate
项目 | 4-庚烯醛 (CAS No.:6728-31-0;FEMA:3289) | 惕各酸烯丙酯 (CAS No.:7493-71-2;FEMA:2043) | ||
---|---|---|---|---|
原始 | 目标 | 原始 | 目标 | |
愉悦度 | 29.2 | 29.2 | 42.13 | 42.13 |
可食用味 | 25.59 | 35.00↑ | 32 | 32 |
烘焙味 | 38.11 | 38.11 | 30.8 | 30.8 |
甜味 | 12.46 | 30.00↑ | 33.85 | 33.85 |
水果味 | 11.55 | 25.00↑ | 29.5 | 29.5 |
馊味 | 26.83 | 26.83 | 41.94 | 30.00↓ |
花香味 | 24.33 | 24.33 | 33.46 | 33.46 |
性质 | 4-庚烯醛 | 惕各酸烯丙酯 |
---|---|---|
溶解度①(298 K, 水)/(mg·L-1) | 1810 | 573.6 |
沸点①(101.325 kPa)/K | 429.40 | 445.57 |
K o/w ① | 2.174 | 2.075 |
LC 50 ②/(mol·L-1) | 3.68 | 4.97 |
闪点②/K | 316.33 | 333 |
Table 3 Chemical engineering properties of 4-heptenal and allyl tiglate
性质 | 4-庚烯醛 | 惕各酸烯丙酯 |
---|---|---|
溶解度①(298 K, 水)/(mg·L-1) | 1810 | 573.6 |
沸点①(101.325 kPa)/K | 429.40 | 445.57 |
K o/w ① | 2.174 | 2.075 |
LC 50 ②/(mol·L-1) | 3.68 | 4.97 |
闪点②/K | 316.33 | 333 |
性质 | 4-庚烯醛 | 戊醇 | 噻唑 | 惕各酸烯丙酯 | 庚酸甲酯 | 二甲基三硫 |
---|---|---|---|---|---|---|
CAS No. | 6728-31-0 | 71-41-0 | 288-47-1 | 7493-71-2 | 106-73-0 | 3658-80-8 |
体积分数 | — | 0.9 | 0.1 | — | 0.55 | 0.45 |
蒸气压(298 K)①/Pa | 485.43 | 293.31 | 2881.50 | 169.59 | 190.65 | 142.39 |
扩散系数① | 0.174 | 0.189 | 0.214 | 0.164 | 0.162 | 0.190 |
溶解度①(298 K, 水)/(mg·L-1) | 1810 | 22000 | 53780 | 573.6 | 308.7 | 2390 |
沸点①(101.325 kPa)/K | 429.40 | 406.75 | 387.84 | 445.57 | 444.66 | 447.66 |
K o/w ① | 2.174 | 1.51 | 0.44 | 2.075 | 2.823 | 1.926 |
LC 50 ②/(mol·L-1) | 3.68 | 2.83 | 2.94 | 4.97 | 3.73 | 3.43 |
闪点①/K | 316.33 | 321.89 | 295.22 | 333 | 325.78 | 324.67 |
价格③/(CNY·kg-1) | 38958.64 | 940.69 | 41179.3 | — | 3088.81 | 11338.48 |
Table 4 Components of tuned fragrance design
性质 | 4-庚烯醛 | 戊醇 | 噻唑 | 惕各酸烯丙酯 | 庚酸甲酯 | 二甲基三硫 |
---|---|---|---|---|---|---|
CAS No. | 6728-31-0 | 71-41-0 | 288-47-1 | 7493-71-2 | 106-73-0 | 3658-80-8 |
体积分数 | — | 0.9 | 0.1 | — | 0.55 | 0.45 |
蒸气压(298 K)①/Pa | 485.43 | 293.31 | 2881.50 | 169.59 | 190.65 | 142.39 |
扩散系数① | 0.174 | 0.189 | 0.214 | 0.164 | 0.162 | 0.190 |
溶解度①(298 K, 水)/(mg·L-1) | 1810 | 22000 | 53780 | 573.6 | 308.7 | 2390 |
沸点①(101.325 kPa)/K | 429.40 | 406.75 | 387.84 | 445.57 | 444.66 | 447.66 |
K o/w ① | 2.174 | 1.51 | 0.44 | 2.075 | 2.823 | 1.926 |
LC 50 ②/(mol·L-1) | 3.68 | 2.83 | 2.94 | 4.97 | 3.73 | 3.43 |
闪点①/K | 316.33 | 321.89 | 295.22 | 333 | 325.78 | 324.67 |
价格③/(CNY·kg-1) | 38958.64 | 940.69 | 41179.3 | — | 3088.81 | 11338.48 |
1 | Shibamoto T , Mihara S . Photochemistry of fragrance materials(Ⅰ): Unsaturated compounds[J]. Journal of Toxicology Cutaneous & Ocular Toxicology, 1983, 2(2/3): 153-192. |
2 | 王洪记 . 国际食用香精市场分析[J]. 精细与专用化学品, 1997, 17: 16. |
Wang H J . International fragrance edible market analysis[J]. Fine and Specialty Chemicals, 1997, 17: 16. | |
3 | 胡勇成 . 调香方法的一些认识[C]// 2006年中国香料香精学术研讨会. 上海, 2006: 248-254. |
Hu Y C . Development and Issues on Compoundings[C]// Proceedings of the Symposium on flavor and fragrance in China. Shanghai, 2006: 248-254. | |
4 | Holmes J C , Morrell F A . Oscillographic mass spectrometric monitoring of gas chromatography[J]. Applied Spectroscopy, 1957, 11(2): 86-87. |
5 | NIST . National Institute of Standards and Technology[M]. America: National Institute of Standards and Technology, 1988. |
6 | 林旭辉, 刘平, 李楠 . 食品香精香料及加香技术[M]. 北京: 中国轻工业出版社, 2010: 149-157. |
Lin X H , Liu P , Li N . Food Flavors and Fragrances and Flavoring Techniques[M]. Beijing: China Light Industry Press, 2010: 149-157. | |
7 | 孙宝国 . 肉味香精技术进展[J]. 食品科学, 2004, 25(10): 339-342. |
Sun B G . The development of meat flavor technology[J]. Food Science, 2004, 25(10): 339-342. | |
8 | Hornic K . Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2: 359-366. |
9 | Carrera G V S M , Gupta S , Aires-De-Sousa J . Machine learning of chemical reactivity from databases of organic reactions[J]. J. Comput. Aided Mol. Des., 2009, 23(7): 419-429. |
10 | Venkatraman V , Evjen S , Knuutila H K , et al . Predicting ionic liquid melting points using machine learning[J]. Journal of Molecular Liquids, 2018, 264: 318-326. |
11 | Li Z , Ma X , Xin H . Feature engineering of machine-learning chemisorption models for catalyst design[J]. Catalysis Today, 2016, 280(2): 232-238. |
12 | Spellings M , Glotzer S C . Machine learning for crystal identification and discovery[J]. AIChE Journal, 2018, 64(6): 2198-2206. |
13 | Zhang L , Mao H , Liu L , et al . A machine learning based computer-aided molecular design/screening methodology for fragrance molecules[J]. Computers & Chemical Engineering, 2018, 115: 295-308. |
14 | Holzinger A . Data mining with decision trees: theory and applications[J]. Online Information Review, 2015, 39(3): 437-438. |
15 | Velásco-Mejía A , Vallejo-Becerra V , Chávez-Ramírez A U , et al . Modeling and optimization of a pharmaceutical crystallization process by using neural networks and genetic algorithms[J]. Powder Technology, 2016, 292(11): 122-128. |
16 | Toubaei A , Golmohammadi H , Dashtbozorgi Z , et al . QSPR studies for predicting gas to acetone and gas to acetonitrile solvation enthalpies using support vector machine[J]. Journal of Molecular Liquids, 2012, 175: 24-32. |
17 | Zonouz P R , Niaei A , Tarjomannejad A . Modeling and optimization of toluene oxidation over perovskite-type nanocatalysts using a hybrid artificial neural network-genetic algorithm method[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 65: 276-285. |
18 | Keller A , Gerkin R C , Guan Y , et al . Predicting human olfactory perception from chemical features of odor molecules[J]. Science, 2017, 355(6327): 820-826. |
19 | Keller A , Vosshall L B . Olfactory perception of chemically diverse molecules[J]. BMC Neuroscience, 2016, 17(1): 55. |
20 | Gani R , Brignole E A . Molecular design of solvents for liquid extraction based on UNIFAC[J]. Fluid Phase Equilibria, 1983, 13(83): 331-340. |
21 | Ajmani S , Jadhav K , Kulkarni S A . Group-based QSAR (G-QSAR): mitigating interpretation challenges in QSAR[J]. Molecular Informatics, 2010, 28(1): 36-51. |
22 | Klamt A , Schüürmann G . COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient[J]. J. Chem. Soc. Perkin Transactions, 1993, 2(5): 799-805. |
23 | Teixeira M A , Rodríguez O , Gomes P , et al . Chapter 1 - A Product Engineering Approach in the Perfume Industry[M]. England: Perfume Engineering, 2013: 1-13. |
24 | Nie L , Sun J , Huang R . The biosynthesis and affecting factors of aroma in some fruits[J]. Chinese Bulletin of Botany, 2004, 21(5): 631-637. |
25 | Lavine B K , Davidson C E , Breneman C , et al . Electronic van der Waals surface property descriptors and genetic algorithms for developing structure-activity correlations in olfactory databases[J]. Journal of Chemical Information & Computer Sciences, 2003, 43(6): 1890. |
26 | Lin S T , Sandler S I . A priori phase equilibrium prediction from a segment contribution solvation model[J]. Industrial & Engineering Chemistry Research, 2002, 41(5): 899-913. |
27 | Palomar J , Torrecilla J S , Ferro V R , et al . Development of an a priori ionic liquid design tool(1): Integration of a novel COSMO-RS molecular descriptor on neural networks[J]. Industrial & Engineering Chemistry Research, 2008, 47(13): 4523-4532. |
28 | Hukkerikar A S . Development of pure component property models for chemical product-process design and analysis[D]. Denmark: Technical University of Denmark, 2013. |
29 | Reid R C , Prausnitz J M , Poling B E . The Properties of Gases & Liquids[M]. New York: McGraw Hill, 1988. |
30 | Miller F P , Vandome A F , Mcbrewster J . Coefficient of determination[J]. Alphascript Publishing, 2006, 31(1): 63-64. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||