CIESC Journal ›› 2020, Vol. 71 ›› Issue (S1): 382-390.DOI: 10.11949/0438-1157.20191075
• Energy and environmental engineering • Previous Articles Next Articles
Bowen LIU1,2(),Shuai DENG1,2(),Shuangjun LI1,2,Li ZHAO1,Zhenyu DU1,2,Lijin CHEN1,2
Received:
2019-10-07
Revised:
2019-10-14
Online:
2020-04-25
Published:
2020-04-25
Contact:
Shuai DENG
刘博文1,2(),邓帅1,2(),李双俊1,2,赵力1,杜振宇1,2,陈丽锦1,2
通讯作者:
邓帅
作者简介:
刘博文(1994—),男,硕士研究生,基金资助:
CLC Number:
Bowen LIU, Shuai DENG, Shuangjun LI, Li ZHAO, Zhenyu DU, Lijin CHEN. Experimental investigation on energy-efficiency performance of temperature swing adsorption system for CO2 capture[J]. CIESC Journal, 2020, 71(S1): 382-390.
刘博文, 邓帅, 李双俊, 赵力, 杜振宇, 陈丽锦. 变温吸附碳捕集系统能效性能实验研究[J]. 化工学报, 2020, 71(S1): 382-390.
Add to citation manager EndNote|Ris|BibTeX
参数名称 | 数值 |
---|---|
吸附腔外径/mm | 80 |
吸附腔长度/mm | 760 |
腔体壁厚/mm | 2 |
腔内换热管外径/mm | 10 |
腔内换热管总长/mm | 1463 |
腔内换热管壁厚/mm | 1 |
进气压力/kPa | 100 |
进气流量/(L·s-1) | 0.13 |
Table 1 Details of column and operation parameters
参数名称 | 数值 |
---|---|
吸附腔外径/mm | 80 |
吸附腔长度/mm | 760 |
腔体壁厚/mm | 2 |
腔内换热管外径/mm | 10 |
腔内换热管总长/mm | 1463 |
腔内换热管壁厚/mm | 1 |
进气压力/kPa | 100 |
进气流量/(L·s-1) | 0.13 |
参数 | CO2 | N2 |
---|---|---|
qm/(mol·kg-1) | 5.445 | 1.014 |
k0/Pa-1 | 5.330×10-9 | 2.260×10-8 |
ΔH/(kJ·mol-1) | -26.05 | -13.36 |
n | 0.5506 | 0.4376 |
Table 2 Toth model parameters of isotherms for CO2 and N2 on zeolite 13X-APG
参数 | CO2 | N2 |
---|---|---|
qm/(mol·kg-1) | 5.445 | 1.014 |
k0/Pa-1 | 5.330×10-9 | 2.260×10-8 |
ΔH/(kJ·mol-1) | -26.05 | -13.36 |
n | 0.5506 | 0.4376 |
CO2浓度/% | 吸附温度/K | 解吸温度/K | S |
---|---|---|---|
15 | 288 | 363 | 8.579 |
15 | 288 | 373 | 9.614 |
15 | 288 | 383 | 10.51 |
15 | 280 | 363 | 11.72 |
15 | 273 | 363 | 12.20 |
17 | 288 | 363 | 11.44 |
19 | 288 | 363 | 12.27 |
Table 3 CO2 working capacity and CO2 over N2 selectivity under experimental conditions
CO2浓度/% | 吸附温度/K | 解吸温度/K | S |
---|---|---|---|
15 | 288 | 363 | 8.579 |
15 | 288 | 373 | 9.614 |
15 | 288 | 383 | 10.51 |
15 | 280 | 363 | 11.72 |
15 | 273 | 363 | 12.20 |
17 | 288 | 363 | 11.44 |
19 | 288 | 363 | 12.27 |
1 | Special report on global warming of 1.5℃ [R]. Incheon, South Korea: Intergovernmental Panel on Climate Change (IPCC), 2018. |
2 | Ling H, Liu S, Gao H, et al. Effect of heat-stable salts on absorption/desorption performance of aqueous monoethanolamine (MEA) solution during carbon dioxide capture process [J]. Separation and Purification Technology, 2019, 212: 822-833. |
3 | Liu Z, Wang L, Kong X, et al. Onsite CO2 capture from flue gas by an adsorption process in a coal-fired power plant [J]. Industrial & Engineering Chemistry Research, 2012, 51(21): 7355-7363. |
4 | Wawrzyńczak D, Majchrzak-Kucęba I, Srokosz K, et al. The pilot dual-reflux vacuum pressure swing adsorption unit for CO2 capture from flue gas [J]. Separation and Purification Technology, 2019, 209: 560-570. |
5 | Mendes P A P, Ribeiro A M, Gleichmann K, et al. Separation of CO2/N2 on binderless 5A zeolite [J]. Journal of CO2 Utilization, 2017, 20: 224-233. |
6 | Yan H, Fu Q, Zhou Y, et al. CO2 capture from dry flue gas by pressure vacuum swing adsorption: a systematic simulation and optimization [J]. International Journal of Greenhouse Gas Control, 2016, 51: 1-10. |
7 | Cho S H, Park J H, Beum H T, et al. A 2-stage PSA process for the recovery of CO2 from flue gas and its power consumption [J]. Studies in Surface Science & Catalysis, 2004, 153(4): 405-410. |
8 | Park J, Beum H, Kim J, et al. Numerical analysis on the power consumption of the PSA process for recovering CO2 from flue gas [J]. Industrial & Engineering Chemistry Research, 2002, 41(16): 4122-4131. |
9 | Shen C, Liu Z, Li P, et al. Two-stage VPSA process for CO2 capture from flue gas using activated carbon beads [J]. Industrial & Engineering Chemistry Research, 2012, 51(13): 5011-5021. |
10 | Hosseini S F, Talaie M R, Aghamiri S, et al. Mathematical modeling of rapid temperature swing adsorption; the role of influencing parameters [J]. Separation and Purification Technology, 2017, 183: 181-193. |
11 | Hefti M, Joss L, Bjelobrk Z, et al. On the potential of phase-change adsorbents for CO2 capture by temperature swing adsorption [J]. Faraday Discussions, 2016, 192: 153-179. |
12 | Joss L, Gazzani M, Mazzotti M. Rational design of temperature swing adsorption cycles for post-combustion CO2 capture [J]. Chemical Engineering Science, 2017, 158: 381-394. |
13 | Merel J, Clausse M, Meunier F. Experimental Investigation on CO2 post-combustion capture by indirect thermal swing adsorption using 13X and 5A zeolites [J]. Industrial & Engineering Chemistry Research, 2008, 47(1): 209-215. |
14 | Osaka Y, Tsujiguchi T, Kodama A. Experimental investigation on the CO2 separation performance from humid flue gas by TSA process [J]. Separation and Purification Technology, 2018, 207: 77-82. |
15 | Ntiamoah A, Ling J, Xiao P, et al. CO2 Capture by temperature swing adsorption: use of hot CO2 -rich gas for regeneration [J]. Industrial & Engineering Chemistry Research, 2016, 55(3): 703-713. |
16 | Zhao Q, Wu F, He Y, et al. Impact of operating parameters on CO2 capture using carbon monolith by electrical swing adsorption technology (ESA) [J]. Chemical Engineering Journal, 2017, 327: 441-453. |
17 | Lillia S, Bonalumi D, Grande C, et al. A comprehensive modeling of the hybrid temperature electric swing adsorption process for CO2 capture [J]. International Journal of Greenhouse Gas Control, 2018, 74: 155-173. |
18 | Song C, Kansha Y, Fu Q, et al. Reducing energy consumption of advanced PTSA CO2 capture process ― experimental and numerical study [J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 64: 69-78. |
19 | Wurzbacher J A. Development of a temperature-vacuum swing process for CO₂ capture from ambient air [J]. Mission Reports of Visiting Experts J., 2015, 11(2): 74-84. |
20 | Ishibashi M, Ota H, Akutsu N, et al. Technology for removing carbon dioxide from power plant flue gas by the physical adsorption method [J]. Energy Conversion & Management, 1996, 37(6/7/8): 929-933. |
21 | Zhao R, Zhao L, Deng S, et al. A comparative study on CO2 capture performance of vacuum-pressure swing adsorption and pressure-temperature swing adsorption based on carbon pump cycle [J]. Energy, 2017, 137: 495-509. |
22 | Ben-Mansour R, Qasem N A A. An efficient temperature swing adsorption (TSA) process for separating CO2 from CO2/N2 mixture using Mg-MOF-74 [J]. Energy Conversion and Management, 2018, 156: 10-24. |
23 | Santra B. Molecular rearrangement of trinuclear Cu(I)-NHC: synthesis of mono, binuclear and polymeric Cu(I)-NHCs [J]. Chemistry Select, 2019, 4(6): 1866-1871. |
24 | Zhou H C, Long J R, Yaghi O M. Introduction to metal-organic frameworks [J]. Chemical Reviews, 2012, 112(2): 673-674. |
25 | Zhang W, Liu H, Sun C, et al. Capturing CO2 from ambient air using a polyethyleneimine-silica adsorbent in fluidized beds [J]. Chemical Engineering Science, 2014, 116: 306-316. |
26 | Zhao R, Deng S, Liu Y, et al. Carbon pump: Fundamental theory and applications [J]. Energy, 2017, 119: 1131-1143. |
27 | Zhao R, Deng S, Zhao L, et al. Performance analysis of temperature swing adsorption for CO2 capture using thermodynamic properties of adsorbed phase [J]. Applied Thermal Engineering, 2017, 123: 205-215. |
28 | Tao L, Xiao P, Qader A, et al. CO2 capture from high concentration CO2 natural gas by pressure swing adsorption at the CO2 CRC Otway site, Australia [J]. International Journal of Greenhouse Gas Control, 2019, 83: 1-10. |
29 | Liu B, Shi J, Yue K, et al. Distinct temperature-dependent CO2 sorption of two isomeric metal-organic frameworks [J]. Crystal Growth & Design, 2014, 14(4): 2003-2008. |
[1] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[2] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[3] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[4] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[5] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[6] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[7] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[8] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[9] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[10] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
[11] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[12] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[13] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[14] | Xingchi ZHU, Zhiyuan GUO, Zhiyong JI, Jing WANG, Panpan ZHANG, Jie LIU, Yingying ZHAO, Junsheng YUAN. Simulation and optimization of selective electrodialysis magnesium and lithium separation process [J]. CIESC Journal, 2023, 74(6): 2477-2485. |
[15] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||