CIESC Journal ›› 2020, Vol. 71 ›› Issue (1): 138-147.DOI: 10.11949/0438-1157.20191208
• Reviews and monographs • Previous Articles Next Articles
Jiajia LIU(),Xue FU,Yingjie XU()
Received:
2019-10-22
Revised:
2019-10-31
Online:
2020-01-05
Published:
2020-01-05
Contact:
Yingjie XU
通讯作者:
许映杰
作者简介:
刘佳佳(1996—),男,硕士研究生,基金资助:
CLC Number:
Jiajia LIU, Xue FU, Yingjie XU. Progress on carbon monoxide removal using ionic liquids[J]. CIESC Journal, 2020, 71(1): 138-147.
刘佳佳, 付雪, 许映杰. 离子液体吸收分离一氧化碳的研究进展[J]. 化工学报, 2020, 71(1): 138-147.
Add to citation manager EndNote|Ris|BibTeX
1 | Patterson P M , Das T K , Davis B H . Carbon monoxide hydrogenation over molybdenum and tungsten carbides[J]. Applied Catalysis A: General, 2003, 251(2): 449-455. |
2 | Zhang H , Chu W , Xu H , et al . Plasma-assisted preparation of Fe-Cu bimetal catalyst for higher alcohols synthesis from carbon monoxide hydrogenation[J]. Fuel, 2010, 89(10): 3127-3131. |
3 | Hanc-Scherer F A , Sánchez-Sánchez C M , Ilea P , et al . Surface-sensitive electrooxidation of carbon monoxide in room temperature ionic liquids[J]. ACS Catalysis, 2013, 3(12): 2935-2938. |
4 | Ejigu A , Johnson L , Licence P , et al . Electrocatalytic oxidation of methanol and carbon monoxide at platinum in protic ionic liquids[J]. Electrochemistry Communications, 2012, 23: 122-124. |
5 | Hwang S , Lee J , Hong U G , et al . Methane production from carbon monoxide and hydrogen over nickel-alumina xerogel catalyst: effect of nickel content[J]. Journal of Industrial and Engineering Chemistry, 2011, 17(1): 154-157. |
6 | Sonoda N , Mtyoshi N , Tsunoi S , et al . A new and convenient process for separation of carbon monoxide[J]. Chemistry Letters, 1990, 19(10): 1873-1876. |
7 | Evans A , Luebke R , Petit C . The use of metal-organic frameworks for CO purification[J]. Journal of Materials Chemistry A, 2018, 6(23): 10570-10594. |
8 | Kasuya F , Tsuji T . High purity CO gas separation by pressure swing adsorption[J]. Gas Separation & Purification, 1991, 5(4): 242-246. |
9 | Hogendoorn J A , van Swaaij W P M , Versteeg G F . The absorption of carbon monoxide in COSORB solutions: absorption rate and capacity[J]. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1995, 59(3): 243-252. |
10 | Rogers R D , Seddon K R . Ionic liquids-solvents of the future?[J]. Science, 2003, 302(5646): 792-793. |
11 | Seddon K R . Ionic liquids for clean technology[J]. Journal of Chemical Technology & Biotechnology, 1997, 68(4): 351-356. |
12 | Plechkova N V , Seddon K R . Applications of ionic liquids in the chemical industry[J]. Chemical Society Reviews, 2008, 37(1): 123-150. |
13 | Holbrey J D , Seddon K R . Ionic liquids[J]. Clean Products and Processes, 1999, 1(4): 223-236. |
14 | Wang C , Luo H , Jiang D , et al . Carbon dioxide capture by superbase‐derived protic ionic liquids[J]. Angewandte Chemie International Edition, 2010, 49(34): 5978-5981. |
15 | Gurau G , Rodríguez H , Kelley S P , et al . Demonstration of chemisorption of carbon dioxide in 1,3‐dialkylimidazolium acetate ionic liquids[J]. Angewandte Chemie International Edition, 2011, 50(50): 12024-12026. |
16 | Shiflett M B , Niehaus A M S , Yokozeki A . Separation of N2O and CO2 using room-temperature ionic liquid [bmim][BF4][J]. Journal of Physical Chemistry B, 2011, 115(13): 3478-3487. |
17 | Liu A H , Ma R , Song C , et al . Equimolar CO2 capture by N‐substituted amino acid salts and subsequent conversion[J]. Angewandte Chemie International Edition, 2012, 51(45): 11306-11310. |
18 | Zhao Y , Yu B , Yang Z , et al . A protic ionic liquid catalyzes CO2 conversion at atmospheric pressure and room temperature: synthesis of quinazoline-2,4(1H,3H)-diones[J]. Angewandte Chemie International Edition, 2014, 53(23): 5922-5925. |
19 | Gurkan B E , de la Fuente J C , Mindrup E M , et al . Equimolar CO2 absorption by anion-functionalized ionic liquids[J]. Journal of the American Chemical Society, 2010, 132(7): 2116-2117. |
20 | Luo X , Guo Y , Ding F , et al . Significant improvements in CO2 capture by pyridine‐containing anion‐functionalized ionic liquids through multiple-site cooperative interactions[J]. Angewandte Chemie International Edition, 2014, 53(27): 7053-7057. |
21 | Hu J , Ma J , Zhu Q , et al . Transformation of atmospheric CO2 catalyzed by protic ionic liquids: efficient synthesis of 2-oxazolidinones[J]. Angewandte Chemie International Edition, 2015, 54(18): 5399-5403. |
22 | Chen F F , Huang K , Zhou Y , et al . Multi‐molar absorption of CO2 by the activation of carboxylate groups in amino acid ionic liquids[J]. Angewandte Chemie International Edition, 2016, 55(25): 7166-7170. |
23 | Cui G , Wang J , Zhang S . Active chemisorption sites in functionalized ionic liquids for carbon capture[J]. Chemical Society Reviews, 2016, 45(15): 4307-4339. |
24 | Chen K , Shi G , Zhang W , et al . Computer-assisted design of ionic liquids for efficient synthesis of 3 (2H)-furanones: a domino reaction triggered by CO2 [J]. Journal of the American Chemical Society, 2016, 138(43): 14198-14201. |
25 | Wu W , Han B , Gao H , et al . Desulfurization of flue gas: SO2 absorption by an ionic liquid[J]. Angewandte Chemie International Edition, 2004, 43(18): 2415-2417. |
26 | Jiang Y Y , Zhou Z , Jiao Z , et al . SO2 gas separation using supported ionic liquid membranes[J]. Journal of Physical Chemistry B, 2007, 111(19): 5058-5061. |
27 | Wang C , Cui G , Luo X , et al . Highly efficient and reversible SO2 capture by tunable azole-based ionic liquids through multiple-site chemical absorption[J]. Journal of the American Chemical Society, 2011, 133(31): 11916-11919. |
28 | Cui G , Zheng J , Luo X , et al . Tuning anion‐functionalized ionic liquids for improved SO2 capture[J]. Angewandte Chemie International Edition, 2013, 52(40): 10620-10624. |
29 | Huang K , Chen Y L , Zhang X M , et al . SO2 absorption in acid salt ionic liquids/sulfolane binary mixtures: experimental study and thermodynamic analysis[J]. Chemical Engineering Journal, 2014, 237: 478-486. |
30 | Jou F Y , Mather A E . Solubility of hydrogen sulfide in [bmim][PF6][J]. International Journal of Thermophysics, 2007, 28(2): 490. |
31 | Huang K , Cai D N , Chen Y L , et al . Thermodynamic validation of 1-alkyl-3-methylimidazolium carboxylates as task‐specific ionic liquids for H2S absorption[J]. AIChE Journal, 2013, 59(6): 2227-2235. |
32 | 曹领帝, 曾少娟, 张香平, 等 . 离子液体吸收分离硫化氢进展[J]. 化工学报, 2015, 66(S1): 1-9. |
Cao L D , Zeng S J , Zhang X P , et al . Progress on hydrogen sulfide removal using ionic liquids[J]. CIESC Journal, 2015, 66(S1):1-9. | |
33 | Revelli A L , Mutelet F , Jaubert J N . Reducing of nitrous oxide emissions using ionic liquids[J]. Journal of Physical Chemistry B, 2010, 114(24): 8199-8206. |
34 | Duan E , Guo B , Zhang D , et al . Absorption of NO and NO2 in caprolactam tetrabutyl ammonium halide ionic liquids[J]. Journal of the Air & Waste Management Association, 2011, 61(12): 1393-1397. |
35 | Jiang B , Lin W , Zhang L , et al . 1,3-Dimethylurea tetrabutylphosphonium bromide ionic liquids for NO efficient and reversible capture[J]. Energy & Fuels, 2016, 30(1): 735-739. |
36 | Chen K , Shi G , Zhou X , et al . Highly efficient nitric oxide capture by azole‐based ionic liquids through multiple‐site absorption[J]. Angewandte Chemie International Edition, 2016, 55(46): 14364-14368. |
37 | Yokozeki A , Shiflett M B . Ammonia solubilities in room-temperature ionic liquids[J]. Industrial & Engineering Chemistry Research, 2007, 46(5): 1605-1610. |
38 | Li G , Zhou Q , Zhang X , et al . Solubilities of ammonia in basic imidazolium ionic liquids[J]. Fluid Phase Equilibria, 2010, 297(1): 34-39. |
39 | 曾少娟, 尚大伟, 余敏, 等 . 离子液体在氨气分离回收中的应用及展望[J]. 化工学报, 2019, 70(3):791-800. |
Zeng S J , Shang D W , Yu M , et al . Applications and perspectives of NH3 separation and recovery with ionic liquids[J]. CIESC Journal, 2019, 70(3):791-800. | |
40 | Blyholder G . Molecular orbital view of chemisorbed carbon monoxide[J]. Journal of Physical Chemistry, 1964, 68(10): 2772-2777. |
41 | Kumełan J , Kamps Á P S , Urukova I , et al . Solubility of oxygen in the ionic liquid [bmim][PF6]: experimental and molecular simulation results[J]. Journal of Chemical Thermodynamics, 2005, 37(6): 595-602. |
42 | Liu Q , Takemura F , Yabe A . Solubility and diffusivity of carbon monoxide in liquid methanol[J]. Journal of Chemical & Engineering Data, 1996, 41(3): 589-592. |
43 | Jeong A Y , Cho H K , Lim J S . Solubility measurement and correlation of carbon monoxide (CO) in butyraldehydes: n-butyraldehyde and iso-butyraldehyde[J]. Journal of Chemical & Engineering Data, 2017, 62(2): 704-711. |
44 | Ohlin C A , Dyson P J , Laurenczy G . Carbon monoxide solubility in ionic liquids: determination, prediction and relevance to hydroformylation[J]. Chemical Communications, 2004, (9): 1070-1071. |
45 | Raeissi S , Florusse L J , Peters C J . Purification of flue gas by ionic liquids: carbon monoxide capture in [bmim][Tf2N][J]. AIChE Journal, 2013, 59(10): 3886-3891. |
46 | Kumełan J , Kamps Á P S , Tuma D , et al . Solubility of CO in the ionic liquid [bmim][PF6][J]. Fluid Phase Equilibria, 2005, 228: 207-211. |
47 | Kumełan J , Kamps Á P S , Tuma D , et al . Solubility of the single gases H2 and CO in the ionic liquid [bmim][CH3SO4][J]. Fluid Phase Equilibria, 2007, 260(1): 3-8. |
48 | Kumełan J , Kamps Á P S , Tuma D , et al . Solubility of the single gases carbon monoxide and oxygen in the ionic liquid [hmim][Tf2N][J]. Journal of Chemical & Engineering Data, 2009, 54(3): 966-971. |
49 | Tao D J , Chen F F , Tian Z Q , et al . Highly efficient carbon monoxide capture by carbanion‐functionalized ionic liquids through C‐site interactions[J]. Angewandte Chemie International Edition, 2017, 56(24): 6843-6847. |
50 | David O C , Zarca G , Gorri D , et al . On the improved absorption of carbon monoxide in the ionic liquid 1-hexyl-3-methylimidazolium chlorocuprate[J]. Separation and Purification Technology, 2012, 97: 65-72. |
51 | Zarca G , Ortiz I , Urtiaga A . Novel solvents based on thiocyanate ionic liquids doped with copper (I) with enhanced equilibrium selectivity for carbon monoxide separation from light gases[J]. Separation and Purification Technology, 2018, 196: 47-56. |
52 | Liu Y M , Tian Z , Qu F , et al . Tuning ion-pair interaction in cuprous-based protic ionic liquids for significantly improved CO capture[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11894-11900. |
53 | Tu Z H , Zhang Y Y , Wu Y T , et al . Self-enhancement of CO reversible absorption accompanied by phase transition in protic chlorocuprate ionic liquids for effective CO separation from N2 [J]. Chemical Communications, 2019, 55(23): 3390-3393. |
54 | Florusse L J , Raeissi S , Peters C J . An IUPAC task group study: the solubility of carbon monoxide in [hmim][Tf2N] at high pressures[J]. Journal of Chemical & Engineering Data, 2011, 56(12): 4797-4799. |
55 | Perez-Salado Kamps A , Tuma D , Xia J , et al . Solubility of CO2 in the ionic liquid [bmim][PF6][J]. Journal of Chemical & Engineering Data, 2003, 48(3): 746-749. |
56 | Kumełan J , Pérez-Salado Kamps Á, Tuma D , et al . Solubility of CO2 in the ionic liquids [bmim][CH3SO4] and [bmim][PF6][J]. Journal of Chemical & Engineering Data, 2006, 51(5): 1802-1807. |
57 | Kumełan J , Kamps A P S , Tuma D , et al . Solubility of CO2 in the ionic liquid [hmim][Tf2N][J]. The Journal of Chemical Thermodynamics, 2006, 38(11): 1396-1401. |
58 | Li X , Zhao D , Fei Z , et al . Applications of functionalized ionic liquids[J]. Science in China Series B: Chemistry, 2006, 49(5): 385-401. |
59 | Lee S . Functionalized imidazolium salts for task-specific ionic liquids and their applications[J]. Chemical Communications, 2006, (10): 1049-1063. |
60 | Liu F , Huang K , Jiang L . Promoted adsorption of CO2 on amine‐impregnated adsorbents by functionalized ionic liquids[J]. AIChE Journal, 2018, 64(10): 3671-3680. |
61 | Li A , Tian Z , Yan T , et al . Anion-functionalized task-specific ionic liquids: molecular origin of change in viscosity upon CO2 capture[J]. Journal of Physical Chemistry B, 2014, 118(51): 14880-14887. |
62 | Luo X Y , Fan X , Shi G L , et al . Decreasing the viscosity in CO2 capture by amino-functionalized ionic liquids through the formation of intramolecular hydrogen bond[J]. Journal of Physical Chemistry B, 2016, 120(10): 2807-2813. |
63 | Qian W , Xu Y , Xie B , et al . Alkanolamine-based dual functional ionic liquids with multidentate cation coordination and pyrazolide anion for highly efficient CO2 capture at relatively high temperature[J]. International Journal of Greenhouse Gas Control, 2017, 56: 194-201. |
64 | Lashani-zadehgan A , Darvishi P . Thermophysical properties and CO2 absorption studies of the amine functionalized [Amim][Tf2N] and the non-functionalized counterpart [bmim][Tf2N] ionic liquids[J]. International Journal of Greenhouse Gas Control, 2016, 53: 328-337. |
65 | Wang G , Hou W , Xiao F , et al . Low-viscosity triethylbutylammonium acetate as a task-specific ionic liquid for reversible CO2 absorption[J]. Journal of Chemical & Engineering Data, 2011, 56(4): 1125-1133. |
66 | Jiang B , Huang Z , Zhang L , et al . Highly efficient and reversible CO2 capture by imidazolate-based ether-functionalized ionic liquids with a capture transforming process[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 69: 85-92. |
67 | Huang Y , Cui G , Wang H , et al . Absorption and thermodynamic properties of CO2 by amido-containing anion-functionalized ionic liquids[J]. RSC Advances, 2019, 9(4): 1882-1888. |
68 | Zeng S , Wang J , Bai L , et al . Highly selective capture of CO2 by ether-functionalized pyridinium ionic liquids with low viscosity[J]. Energy & Fuels, 2015, 29(9): 6039-6048. |
69 | Cui G , Zhang F , Zhou X , et al . Acylamido-based anion-functionalized ionic liquids for efficient SO2 capture through multiple-site interactions[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(9): 2264-2270. |
70 | Chen K , Lin W , Yu X , et al . Designing of anion‐functionalized ionic liquids for efficient capture of SO2 from flue gas[J]. AIChE Journal, 2015, 61(6): 2028-2034. |
71 | Li J , Kang Y , Li B , et al . PEG-linked functionalized dicationic ionic liquids for highly efficient SO2 capture through physical absorption[J]. Energy & Fuels, 2018, 32(12): 12703-12710. |
72 | Huang K , Cai D N , Chen Y L , et al . Dual Lewis base functionalization of ionic liquids for highly efficient and selective capture of H2S[J]. ChemPlusChem, 2014, 79(2): 241-249. |
73 | Zheng W , Wu D , Feng X , et al . Low viscous protic ionic liquids functionalized with multiple Lewis base for highly efficient capture of H2S[J]. Journal of Molecular Liquids, 2018, 263: 209-217. |
74 | Huang K , Zhang J Y , Hu X B , et al . Absorption of H2S and CO2 in aqueous solutions of tertiary-amine functionalized protic ionic liquids[J]. Energy & Fuels, 2017, 31(12): 14060-14069. |
75 | Bates E D , Mayton R D , Ntai I , et al . CO2 capture by a task-specific ionic liquid[J]. Journal of the American Chemical Society, 2002, 124(6): 926-927. |
76 | Shiflett M B , Yokozeki A . Solubilities and diffusivities of carbon dioxide in ionic liquids:[bmim][PF6] and [bmim][BF4][J]. Industrial & Engineering Chemistry Research, 2005, 44(12): 4453-4464. |
77 | Ding F , He X , Luo X , et al . Highly efficient CO2 capture by carbonyl-containing ionic liquids through Lewis acid-base and cooperative C—H⋯O hydrogen bonding interaction strengthened by the anion[J]. Chemical Communications, 2014, 50(95): 15041-15044. |
78 | Luo X , Guo Y , Ding F , et al . Significant improvements in CO2 capture by pyridine‐containing anion‐functionalized ionic liquids through multiple‐site cooperative interactions[J]. Angewandte Chemie International Edition, 2014, 53(27): 7053-7057. |
79 | Repper S E , Haynes A , Ditzel E J , et al . Infrared spectroscopic study of absorption and separation of CO using copper (I)-containing ionic liquids[J]. Dalton Transactions, 2017, 46(9): 2821-2828. |
80 | Huang H Y , Padin J , Yang R T . Comparison of π-complexations of ethylene and carbon monoxide with Cu+ and Ag+ [J]. Industrial & Engineering Chemistry Research, 1999, 38(7): 2720-2725. |
81 | Zarca G , Ortiz I , Urtiaga A , et al . Accurate thermodynamic modeling of ionic liquids/metal salt mixtures: application to carbon monoxide reactive absorption[J]. AIChE Journal, 2017, 63(8): 3532-3543. |
82 | Lei Z , Shen P , Dai C . Solubility of CO in the mixture of ionic liquid and ZIF: an experimental and modeling study[J]. Journal of Chemical & Engineering Data, 2015, 61(2): 846-855. |
83 | Zarca G , Ortiz I , Urtiaga A . Recovery of carbon monoxide from flue gases by reactive absorption in ionic liquid imidazolium chlorocuprate (I): Mass transfer coefficients[J]. Chinese Journal of Chemical Engineering, 2015, 23(5): 769-774. |
84 | Zarca G , Urtiaga A , Ortiz I , et al . Carbon monoxide reactive separation with basic 1-hexyl-3-methylimidazolium chlorocuprate (I) ionic liquid: electrochemical determination of mass transport properties[J]. Separation and Purification Technology, 2015, 141: 31-37. |
85 | Zarca G , Ortiz I , Urtiaga A . Kinetics of the carbon monoxide reactive uptake by an imidazolium chlorocuprate (I) ionic liquid[J]. Chemical Engineering Journal, 2014, 252: 298-304. |
86 | Sharma A , Julcour C , Kelkar A A , et al . Mass transfer and solubility of CO and H2 in ionic liquid. Case of [Bmim][PF6] with gas-inducing stirrer reactor[J]. Industrial & Engineering Chemistry Research, 2009, 48(8): 4075-4082. |
87 | Zarca G , Ortiz I , Urtiaga A . Behaviour of 1-hexyl-3-methylimidazolium chloride-supported ionic liquid membranes in the permeation of CO2, H2, CO and N2 single and mixed gases[J]. Desalination and Water Treatment, 2015, 56(13): 3640-3646. |
88 | Zarca G , Ortiz I , Urtiaga A . Copper (I)-containing supported ionic liquid membranes for carbon monoxide/nitrogen separation[J]. Journal of Membrane Science, 2013, 438: 38-45. |
89 | Zarca G , Ortiz I , Urtiaga A . Facilitated-transport supported ionic liquid membranes for the simultaneous recovery of hydrogen and carbon monoxide from nitrogen-enriched gas mixtures[J]. Chemical Engineering Research and Design, 2014, 92(4): 764-768. |
90 | Feng S , Wu Y , Luo J , et al . AgBF4/[emim][BF4] supported ionic liquid membrane for carbon monoxide/nitrogen separation[J]. Journal of Energy Chemistry, 2019, 29: 31-39. |
[1] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[2] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[3] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[4] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[5] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[6] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[7] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[8] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[9] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[10] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[11] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[12] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[13] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[14] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[15] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||