CIESC Journal ›› 2020, Vol. 71 ›› Issue (1): 354-360.DOI: 10.11949/0438-1157.20191226
• Biochemical engineering and technology • Previous Articles Next Articles
Jiachen LI1,2(),Bin YU1,Qi WANG1(
),Li ZHANG2
Received:
2019-10-23
Revised:
2019-11-07
Online:
2020-01-05
Published:
2020-01-05
Contact:
Qi WANG
通讯作者:
王琦
作者简介:
李嘉辰(1993—),男,硕士研究生,基金资助:
CLC Number:
Jiachen LI, Bin YU, Qi WANG, Li ZHANG. Molecular simulation on doxorubicin encapsulation and transport by chitosan-boron nitride nanotubes[J]. CIESC Journal, 2020, 71(1): 354-360.
李嘉辰, 俞斌, 王琦, 张丽. 分子模拟研究壳聚糖-氮化硼纳米管封装及输运阿霉素[J]. 化工学报, 2020, 71(1): 354-360.
Fig.4 Potential of mean force (PMF) of —NH2 and DOX passing through BNNT (14,14) [The reaction coordinate is along the central axis of BNNTs. 0 nm is the middle location of the tube and the dotted lines represent the end location of BNNT (14,14)]
Fig.5 (a) Ⅰ: Density map of water molecules in BNNT (14,14) in xy plane; DOX with different orientations in xy plane, Ⅱ: vertical; Ⅲ: horizontal; (b) external force on DOX versus simulation time [the pull rate is 0.01 nm/ps and the dotted lines represent the end location of BNNT (14,14)]
Fig.7 (a) COM distance between POPC/CS_B10/DOX and BNNT (14,14) versus simulation time; (b) interaction energy between CS_B10/DOX/PO and BNNT (14,14); (c) snapshot in BNNT (14,14) (the dotted line is the center of POPC)
1 | Bhirde A A, Patel V, Gavard J, et al. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery[J]. ACS Nano, 2009, 3(2): 307-316. |
2 | Huang H, Yuan Q, Shah J S, et al. A new family of folate-decorated and carbon nanotube-mediated drug delivery system: synthesis and drug delivery response[J]. Advanced Drug Delivery Reviews, 2011, 63(14/15): 1332-1339. |
3 | Ciofani G, Raffa V, Yu J, et al. Boron nitride nanotubes: a novel vector for targeted magnetic drug delivery[J]. Current Nanoscience, 2009, 5(1): 33-38. |
4 | Ciofani G. Potential applications of boron nitride nanotubes as drug delivery systems[J]. Expert Opinion on Drug Delivery, 2010, 7(8): 889-893. |
5 | Li L, Li L H, Ramakrishnan S, et al. Controlling wettability of boron nitride nanotube films and improved cell proliferation[J]. The Journal of Physical Chemistry C, 2012, 116(34): 18334-18339. |
6 | Chen X, Wu P, Rousseas M, et al. Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells[J]. Journal of the American Chemical Society, 2009, 131(3): 890-891. |
7 | Yu J, Chen Y, Cheng B M. Dispersion of boron nitride nanotubes in aqueous solution with the help of ionic surfactants[J]. Solid State Communications, 2009, 149(19/20): 763-766. |
8 | Tan M L, Choong P F M, Dass C R. Doxorubicin delivery systems based on chitosan for cancer therapy[J]. Journal of Pharmacy and Pharmacology, 2009, 61(2): 131-142. |
9 | Xu X Y, Zhou J P, Li L, et al. Preparation of doxorubicin-loaded chitosan polymeric micelle and study on its tissue biodistribution in mice[J]. Acta Pharmaceutica Sinica, 2008, 43(7): 743-748. |
10 | Rao W, Wang H, Han J, et al. Chitosan-decorated doxorubicin-encapsulated nanoparticle targets and eliminates tumor reinitiating cancer stem-like cells[J]. ACS Nano, 2015, 9(6): 5725-5740. |
11 | Ciofani G, Danti S, D’Alessandro D, et al. Assessing cytotoxicity of boron nitride nanotubes: interference with the MTT assay[J]. Biochemical and Biophysical Research Communications, 2010, 394(2): 405-411. |
12 | Li H J, Du J Z, Liu J, et al. Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: instantaneous size switching and improved tumor penetration[J]. ACS Nano, 2016, 10(7): 6753-6761. |
13 | Kanamala M, Wilson W R, Yang M, et al. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: a review[J]. Biomaterials, 2016, 85: 152-167. |
14 | Katas H, Alpar H O. Development and characterisation of chitosan nanoparticles for siRNA delivery[J]. Journal of Controlled Release, 2006, 115(2): 216-225. |
15 | Risbud M V, Hardikar A A, Bhat S V, et al. pH-sensitive freeze-dried chitosan-polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery[J]. Journal of Controlled Release, 2000, 68(1): 23-30. |
16 | Jiao J, Li X, Zhang S, et al. Redox and pH dual-responsive PEG and chitosan-conjugated hollow mesoporous silica for controlled drug release[J]. Materials Science and Engineering: C, 2016, 67: 26-33. |
17 | Mahdavinia G R, Mosallanezhad A, Soleymani M, et al. Magnetic-and pH-responsive κ-carrageenan/chitosan complexes for controlled release of methotrexate anticancer drug[J]. International Journal of Biological Macromolecules, 2017, 97: 209-217. |
18 | Han Y, Elliott J. Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites[J]. Computational Materials Science, 2007, 39(2): 315-323. |
19 | Liang L, Hu W, Zhang Z, et al. Theoretic study on dispersion mechanism of boron nitride nanotubes by polynucleotides[J]. Scientific Reports, 2016, 6: 39747. |
20 |
Li J, Chen C, Zhang J, et al. Molecular dynamics study on loading mechanism of chitosan into boron nitride nanotubes [J]. Journal of Molecular Liquids, 2019, DOI: 10.1016/j.molliq.2019.111753.
DOI |
21 | Ferreira M L, Pedroni V I, Alimenti G A, et al. The interaction between water vapor and chitosan(Ⅱ): Computational study[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 315(1/2/3): 241-249. |
22 | Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03: revision C. 02 [CP]. Wallingford, CT: Gaussian, Inc., 2004: 26. |
23 | Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33-38. |
24 | Wu Y, Wagner L K, Aluru N R. Hexagonal boron nitride and water interaction parameters[J]. The Journal of Chemical Physics, 2016, 144(16): 164118. |
25 | Darden T, York D, Pedersen L. Particle mesh Ewald: an N⋅log (N) method for Ewald sums in large systems[J]. The Journal of Chemical Physics, 1993, 98(12): 10089-10092. |
26 | Bird R B, Hirschfelder J O, Curtiss C F. Molecular Theory of Gases and Liquids[M]. John Wiley, 1954. |
27 | Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling[J]. The Journal of Chemical Physics, 2007, 126(1): 014101. |
28 | Thomas M, Enciso M, Hilder T A. Insertion mechanism and stability of boron nitride nanotubes in lipid bilayers[J]. The Journal of Physical Chemistry B, 2015, 119(15): 4929-4936. |
29 | Torrie G M, Valleau J P. Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling[J]. Journal of Computational Physics, 1977, 23(2): 187-199. |
30 | Kumar S, Rosenberg J M, Bouzida D, et al. The weighted histogram analysis method for free-energy calculations on biomolecules (Ⅰ): The method[J]. Journal of Computational Chemistry, 1992, 13(8): 1011-1021. |
[1] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[2] | Lu DENG, Xiaojie JU, Wenjie ZHANG, Rui XIE, Wei WANG, Zhuang LIU, Dawei PAN, Liangyin CHU. Controllable preparation of radioactive chitosan embolic microspheres by microfluidic method [J]. CIESC Journal, 2023, 74(4): 1781-1794. |
[3] | Chengwei LI, Huayong LUO, Mingxuan ZHANG, Peng LIAO, Qian FANG, Hongwei RONG, Jingyin WANG. Microfludically-generated lanthanum hydroxide cross-linked chitosan microspheres for phosphate removal [J]. CIESC Journal, 2022, 73(9): 3929-3939. |
[4] | Renhua PEI, Yonghong WANG, Xinru ZHANG, Jinping LI. Synergistic of carbon nanotube/cyclodextrin metal organic framework for enhancing CO2 separation of mixed matrix membranes [J]. CIESC Journal, 2022, 73(9): 3904-3914. |
[5] | Haoyu XIAO, Haiping YANG, Xiong ZHANG, Yingquan CHEN, Xianhua WANG, Hanping CHEN. Recent progress of catalytic pyrolysis of plastics to produce high value-added products [J]. CIESC Journal, 2022, 73(8): 3461-3471. |
[6] | Xue’an LIU, Liyi TANG, Jian QIN, Dajiang TANG, Zhangfa TONG, Huiying QU. Preparation of carbon nanotube bridged porous carbon by Ni/Co-ZIF-8 pyrolysis and its application to supercapacitors [J]. CIESC Journal, 2022, 73(7): 3287-3297. |
[7] | Chuyue CAI, Xiaoming FANG, Zhengguo ZHANG, Ziye LING. Enhancing heat dissipation performance of paraffin/silicone rubber phase change thermal pad by introducing carbon nanotubes [J]. CIESC Journal, 2022, 73(7): 2874-2884. |
[8] | Yinlong XU, Wenchieh CHENG, Lin WANG, Zhongfei XUE, Yixin XIE. Implication and enhancement mechanism of chitosan-assisted enzyme- induced carbonate precipitation for copper wastewater treatment [J]. CIESC Journal, 2022, 73(5): 2222-2232. |
[9] | Xingda SHI, Huayan CHEN, Yanan GE, Chunrui WU, Hongyou JIA, Xiaolong LYU. Construction of three-dimensional network by modified MWCNT and AlN fillings in PVDF to improve the thermal conductivity [J]. CIESC Journal, 2022, 73(5): 2262-2269. |
[10] | Xue HAN, Shengwang GAO, Guoying WANG, Xunfeng XIA. Research of enhanced carbon nanotubes activated peroxymonosulfate by cerium doping [J]. CIESC Journal, 2022, 73(4): 1743-1753. |
[11] | Huan XU, Lyu KE, Shenghui ZHANG, Zilin ZHANG, Guangdong HAN, Jinsheng CUI, Daoyuan TANG, Donghui HUANG, Jiefeng GAO, Xinjian HE. Upgrading dispersion and interfacial morphologies for thermally conductive polypropylene composites by in situ growth of carbon nanotubes at graphene oxide [J]. CIESC Journal, 2022, 73(11): 5150-5157. |
[12] | Shide WU, Feng YI, Dan PING, Yifei ZHANG, Jian HAO, Guoji LIU, Shaoming FANG. NH4Cl assisted preparation of Ni-N-CNTs catalyst and its performance for electrochemical CO2 reduction [J]. CIESC Journal, 2022, 73(10): 4484-4497. |
[13] | Shaoling CONG, Jie ZHAO, Yufei YANG, Changqing WU, Fan HE, Hua YUAN, Xiaoqin WANG, Shanxin XIONG, Yan WU, Anning ZHOU. Synthesis of N-doped carbon micro-nanotubes using coal-based polyaniline as a carbon and nitrogen source [J]. CIESC Journal, 2021, 72(9): 4950-4960. |
[14] | SUN Jingjing, JIA Lina, LIN Bo, WANG Yan, GONG Junbo. Research advances of drug-drug co-crystals [J]. CIESC Journal, 2021, 72(2): 828-840. |
[15] | LIN Jiawei, SHI Peng, GONG Junbo, WU Songgu. Progress on surface-induced nucleation of drug for controlling polymorphism [J]. CIESC Journal, 2021, 72(2): 814-827. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 611
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 389
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||