CIESC Journal ›› 2020, Vol. 71 ›› Issue (1): 417-425.DOI: 10.11949/0438-1157.20191236
• Material science and engineering, nanotechnology • Previous Articles
Ying WEI1(),Mingsong TAO1,Yaofeng ZHU1,Qingguo ZHANG1,2()
Received:
2019-10-23
Revised:
2019-11-14
Online:
2020-01-05
Published:
2020-01-05
Contact:
Qingguo ZHANG
通讯作者:
张庆国
作者简介:
魏颖(1979—),女,博士,副教授,基金资助:
CLC Number:
Ying WEI, Mingsong TAO, Yaofeng ZHU, Qingguo ZHANG. Preparation of GNs/[Bmim][BF4] composites and their supercapacitive properties[J]. CIESC Journal, 2020, 71(1): 417-425.
魏颖, 陶明松, 朱耀锋, 张庆国. GNs/[Bmim][BF4]复合材料的制备及其超电容性能[J]. 化工学报, 2020, 71(1): 417-425.
Add to citation manager EndNote|Ris|BibTeX
电极材料 | 能量密度/((W·h)/kg) | 功率密度/(W/kg) | 比电容/(F/g) | 体积比电容/ (F/cm3) | 面积比电容/ (F/cm2) | 充放电效率(5000次)/% |
---|---|---|---|---|---|---|
石墨 | 54.72 | 332.54 | 154.63 | 33.62 | 21.85 | 95.63 |
GNs/[Bmim][BF4] | 83.51 | 456.32 | 221.32 | 48.12 | 31.28 | 98.91 |
Table 1 Comparison of electrochemical data between graphite and GNs/[Bmim][BF4] composites
电极材料 | 能量密度/((W·h)/kg) | 功率密度/(W/kg) | 比电容/(F/g) | 体积比电容/ (F/cm3) | 面积比电容/ (F/cm2) | 充放电效率(5000次)/% |
---|---|---|---|---|---|---|
石墨 | 54.72 | 332.54 | 154.63 | 33.62 | 21.85 | 95.63 |
GNs/[Bmim][BF4] | 83.51 | 456.32 | 221.32 | 48.12 | 31.28 | 98.91 |
1 | Wang G, Brown W, Kvent M. Structure and dynamics of electrical double layer in nanoscale systems[J]. Current Opinion in Electrochemistry, 2018, 13: 112-118. |
2 | Wang F, Wu X, Yuan X, et al. Latest advances in supercapacitors: from new electrode materials to novel device designs[J]. Chemical Society Reviews, 2017, 46(22): 6816-6854. |
3 | Wang Y, Song Y, Xia Y. Electrochemical capacitors: mechanism, materials, systems, characterization and applications[J]. Chemical Society Reviews, 2016, 45(21): 5925-5950. |
4 | 刘喜龙. 有机系超级电容用活性炭性能的研究以及大容量超级电容器的开发[D].长春: 吉林大学, 2017. |
Liu X L. Study on the performance of activated carbon for organic supercapacitors and the development of large-capacity supercapacitors[D]. Changchun: Jilin University, 2017. | |
5 | Osti N C, Gallegos A, Dyatkin B, et al. Mixed ionic liquid improves electrolyte dynamics in supercapacitors[J]. The Journal of Physical Chemistry C, 2018, 122(19): 10476-10481. |
6 | Cao Y, Fatemi V, Fang S, et al. Unconventional superconductivity in magic-angle graphene superlattices[J]. Nature, 2018, 556(7699): 43-50. |
7 | Cao Y, Fatemi V, Demir A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices[J]. Nature, 2018, 556(7699): 80-84. |
8 | Lin J, Huang Y, Huang P. Graphene-Based Nanomaterials in Bioimaging[M]//Biomedical Applications of Functionalized Nanomaterials. Dutch: Elsevier, 2018: 247-287. |
9 | Down M P, Banks C E. Freestanding three-dimensional graphene macroporous supercapacitor[J]. ACS Applied Energy Materials, 2018, 1(2): 891-899. |
10 | Welton T. Ionic liquids: a brief history[J]. Biophysical Reviews, 2018, 10(3): 691-706. |
11 | Liu N, Luo F, Wu H, et al. One‐step ionic‐liquid‐assisted electrochemical synthesis of ionic‐liquid‐functionalized graphene sheets directly from graphite[J]. Advanced Functional Materials, 2008, 18(10): 1518-1525. |
12 | Wei D, Grande L, Chundi V, et al. Graphene from electrochemical exfoliation and its direct applications in enhanced energy storage devices[J]. Chemical Communications, 2012, 48(9): 1239-1241. |
13 | 卢南, 黄华, 程兴, 等. 1-丁基-3-甲基咪唑四氟硼酸盐离子液体的合成与表征[J]. 应用化工, 2013, 42(5): 885-887. |
Lu N, Huang H, Cheng X, et al. Synthesis and characterization of 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid[J]. Applied Chemical, 2013, 42(5): 885-887. | |
14 | 魏颖, 张学磊, 张鑫源, 等. 三氟乙酸离子液体/四氟硼酸螺环季铵盐混合电解液的超级电容性质研究[J]. 电子元件与材料, 2016, 35(6): 35-39. |
Wei Y, Zhang X L, Zhang X Y, et al. Study on supercapacitance properties of trifluoroacetic acid ionic liquid/tetrafluoroboric acid spirocyclic quaternary ammonium salt mixed electrolyte[J]. Electronic Components & Materials, 2016, 35(6): 35-39. | |
15 | 朱计划, 杨倩韵, 刘芝婷, 等. 四氟硼酸螺环季铵盐的合成及其超级电容性能[J]. 储能科学与技术, 2018, 7(2): 294-300. |
Zhu J H, Yang Q Y, Liu Z T, et al. Synthesis and supercapacitive properties of tetrafluoroboric acid spirocyclic quaternary ammonium salts[J]. Energy Storage Science and Technology, 2018, 7(2): 294-300. | |
16 | Wang G, Yang J, Park J, et al. Facile synthesis and characterization of graphene nanosheets[J]. The Journal of Physical Chemistry C, 2008, 112(22): 8192-8195. |
17 | Singh V V, Gupta G, Batra A, et al. Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application[J]. Advanced Functional Materials, 2012, 22(11): 2352-2362. |
18 | Georgakilas V, Tiwari J N, Kemp K C, et al. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications[J]. Chemical Reviews, 2016, 116(9): 5464-5519. |
19 | Blees M K, Barnard A W, Rose P A, et al. Graphene kirigami[J]. Nature, 2015, 524(7564): 204-207. |
20 | 吴洪鹏. 石墨烯的制备及在超级电容器中的应用[D]. 北京: 北京交通大学, 2012. |
Wu H P. Preparation of graphene and its application in supercapacitors[D]. Beijing: Beijing Jiaotong University, 2012. | |
21 | Li C, Xu Y T, Zhao B, et al. Flexible graphene electrothermal films made from electrochemically exfoliated graphite[J]. Journal of Materials Science, 2016, 51(2): 1043-1051. |
22 | Abdelkader A M, Kinloch I A, Dryfe R A W. Continuous electrochemical exfoliation of micrometer-sized graphene using synergistic ion intercalations and organic solvents[J]. ACS Applied Materials & Interfaces, 2014, 6(3): 1632-1639. |
23 | Yang Y, Hou H, Zou G, et al. Electrochemical exfoliation of graphene-like two-dimensional nanomaterials[J]. Nanoscale, 2019, 11(1): 16-33. |
24 | Luo Z, Yu T, Ni Z, et al. Electronic structures and structural evolution of hydrogenated graphene probed by Raman spectroscopy[J]. The Journal of Physical Chemistry C, 2011, 115(5): 1422-1427. |
25 | Gupta A K, Tang Y, Crespi V H, et al. Nondispersive Raman D band activated by well-ordered interlayer interactions in rotationally stacked bilayer graphene[J]. Physical Review B, 2010, 82(24): 241406. |
26 | Kudin K N, Ozbas B, Schniepp H C, et al. Raman spectra of graphite oxide and functionalized graphene sheets[J]. Nano Letters, 2008, 8(1): 36-41. |
27 | Li L, Wang M, Cao M, et al. Regulation of radicals from electrochemical exfoliation for production of graphene and its electrochemical properties[J]. Electrochimica Acta, 2017, 258: 1484-1492. |
28 | 孟繁慧. 基于新型纳米结构超级电容器材料的研究[D].济南: 山东大学, 2013. |
Meng F H. Research based on novel nanostructured supercapacitor materials[D]. Jinan: Shandong University, 2013. | |
29 | Chia J S Y, Tan M T T, Khiew P S, et al. A novel one step synthesis of graphene via sonochemical-assisted solvent exfoliation approach for electrochemical sensing application[J]. Chemical Engineering Journal, 2014, 249: 270-278. |
30 | Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers[J]. Physical Review Letters, 2006, 97(18): 187401. |
31 | Cooper A J, Wilson N R, Kinloch I A, et al. Single stage electrochemical exfoliation method for the production of few-layer graphene via intercalation of tetraalkylammonium cations[J]. Carbon, 2014, 66: 340-350. |
32 | Ke Q, Wang J. Graphene-based materials for supercapacitor electrodes—a review[J]. Journal of Materiomics, 2016, 2(1): 37-54. |
33 | 孙谊. 碳基超级电容器单体性能相关理论与应用技术研究[D]. 北京: 北京交通大学, 2013. |
Sun Y. Research on theory and application technology of carbon-based supercapacitor monomer performance[D]. Beijing: Beijing Jiaotong University, 2013. | |
34 | Tang H, Wang J, Yin H, et al. Growth of polypyrrole ultrathin films on MoS2 monolayers as high‐performance supercapacitor electrodes[J]. Advanced Materials, 2015, 27(6): 1117-1123. |
35 | Qu G, Cheng J, Li X, et al. A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode[J]. Advanced Materials, 2016, 28(19): 3646-3652. |
36 | 高丽丽. 超级电容器用聚丙烯腈基活性碳纤维的直接活化制备及性能研究[D]. 长春: 吉林大学, 2014. |
Gao L L. Direct activation preparation and properties of polyacrylonitrile-based activated carbon fibers for supercapacitors[D]. Changchun: Jilin University, 2014. | |
37 | Guan C, Liu X, Ren W, et al. Rational design of metal‐organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis[J]. Advanced Energy Materials, 2017, 7(12): 1602391. |
38 | 张诚. 基于复合纳米材料的超级电容器的设计、制备和电化学性能研究[D]. 南京: 南京大学, 2018. |
Zhang C. Design, preparation and electrochemical properties of supercapacitors based on composite nanomaterials[D]. Nanjing: Nanjing University, 2018. | |
39 | 卢骋. 超级电容器用分级孔径碳材料的制备及性能[D]. 杭州: 浙江大学, 2018. |
Lu C. Preparation and properties of graded pore carbon materials for supercapacitors[D]. Hangzhou: Zhejiang University, 2018. | |
40 | Chen G Z. Supercapacitor and supercapattery as emerging electrochemical energy stores[J]. International Materials Reviews, 2017, 62(4): 173-202. |
41 | 赵翠梅. 高性能电极材料及新型非对称超级电容器的研究[D]. 长春: 吉林大学, 2014. |
Zhao C M. Research on high performance electrode materials and new asymmetric supercapacitors[D]. Changchun: Jilin University, 2014. | |
42 | Zhu M, Huang Y, Deng Q, et al. Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene[J]. Advanced Energy Materials, 2016, 6(21): 1600969. |
43 | Elwakil A S, Allagui A, Maundy B J, et al. A low frequency oscillator using a super-capacitor[J]. AEU-International Journal of Electronics and Communications, 2016, 70(7): 970-973. |
44 | Raymundo‐Piñero E, Leroux F, Béguin F. A high‐performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer[J]. Advanced Materials, 2006, 18(14): 1877-1882. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[3] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[4] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[5] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[6] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[7] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[8] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[9] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[10] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[11] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[12] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[13] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[14] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[15] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||