CIESC Journal ›› 2020, Vol. 71 ›› Issue (1): 361-367.DOI: 10.11949/0438-1157.20191261
• Energy and environmental engineering • Previous Articles Next Articles
Qiaoxin XIAO(),Wenjun LIN,Haoran LI,Congmin WANG()
Received:
2019-10-23
Revised:
2019-11-20
Online:
2020-01-05
Published:
2020-01-05
Contact:
Congmin WANG
通讯作者:
王从敏
作者简介:
肖俏欣(1994—),女,硕士研究生,基金资助:
CLC Number:
Qiaoxin XIAO, Wenjun LIN, Haoran LI, Congmin WANG. Efficient SO2 capture by ether-containing anion-functionalized ionic liquids[J]. CIESC Journal, 2020, 71(1): 361-367.
肖俏欣, 林文俊, 李浩然, 王从敏. 含醚阴离子功能化离子液体高效捕集SO2[J]. 化工学报, 2020, 71(1): 361-367.
Add to citation manager EndNote|Ris|BibTeX
离子液体 | 吸收量/(mol·mol-1) | 解吸残余量/(mol·mol-1) | 净吸收量/(mol·mol-1) | 吸收焓①/(kJ·mol-1) |
---|---|---|---|---|
[P66614][PhCOO] | 3.56 | 0.51 | 3.05 | -81.21 |
[P66614][3-CH3OPhCOO] | 4.29 | 0.51 | 3.78 | -96.50 |
[P66614][2-CH3OPhCOO] | 4.49 | 0.56 | 3.93 | -97.30 |
[P66614][4-CH3OPhCOO] | 4.22 | 0.53 | 3.69 | -104.30 |
[P4442][PhCOO] | 3.33 | 0.55 | 2.78 | -81.21 |
[P4442][2-CH3OPhCOO] | 4.00 | 0.68 | 3.32 | -97.30 |
Table 1 SO2 absorption of ionic liquid functionalized with ether anion at 105 Pa
离子液体 | 吸收量/(mol·mol-1) | 解吸残余量/(mol·mol-1) | 净吸收量/(mol·mol-1) | 吸收焓①/(kJ·mol-1) |
---|---|---|---|---|
[P66614][PhCOO] | 3.56 | 0.51 | 3.05 | -81.21 |
[P66614][3-CH3OPhCOO] | 4.29 | 0.51 | 3.78 | -96.50 |
[P66614][2-CH3OPhCOO] | 4.49 | 0.56 | 3.93 | -97.30 |
[P66614][4-CH3OPhCOO] | 4.22 | 0.53 | 3.69 | -104.30 |
[P4442][PhCOO] | 3.33 | 0.55 | 2.78 | -81.21 |
[P4442][2-CH3OPhCOO] | 4.00 | 0.68 | 3.32 | -97.30 |
1 | Wu W , Han B , Gao H , et al . Desulfurization of flue gas: SO2 absorption by an ionic liquid[J]. Angew. Chem. Int. Ed. , 2004, 43: 2415-2417. |
2 | Nickolay A K , Chris A M , Li C , et al . Streets aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015[J]. Atmos. Chem. Phys., 2016, 16: 4605-4629. |
3 | Bao J , Yang X , Zhao Z , et al . The spatial-temporal characteristics of air pollution in China from 2001—2014[J]. Int. J. Environ. Res. Public Health, 2015, 12: 15875-15887. |
4 | Hu H , Yang Q , Lu X , et al . Air pollution and control in different areas of China[J]. Critical Reviews in Environmental Science and Technology, 2010, 40(6): 452-518. |
5 | Ma X , Takao K , Tsutomu T , et al . Use of limestone for SO2 removal from flue gas in the semidry FGD process with a powder-particle spouted bed[J]. Chemical Engineering Science, 2000, 55: 4643-4652. |
6 | Tilly J . Flue gas desulfurization: cost and functional analysis of large scale proven plants[D]. Massachusetts: Massachusetts Institute of Technology, 1983. |
7 | Hirofumi K , Takanori N , Masanori M , et al . New wet FGD process using granular limestone[J]. Ind. Eng. Chem. Res. , 2002, 41(12): 3028-3036. |
8 | Han D H , Sohn H Y . Calcined calcium magnesium acetate as a superior SO2 sorbent (Ⅰ): Thermal decomposition[J]. AIChE J., 2002, 48: 2971-2977. |
9 | Sohn H Y , Han D H . Ca-Mg acetate as dry SO2 sorbent (Ⅱ): Sulfation of CaO in calcination product[J]. AIChE J. , 2002, 48: 2978-2984. |
10 | Sohn H Y , Han D H . Ca-Mg acetate as dry SO2 sorbent(Ⅲ): Sulfation of MgO + CaO[J]. AIChE J. , 2002, 48: 2985-2991. |
11 | Blanchard L A , Hancu D , Beckman E J , et al . Green processing using ionic liquids and CO2 [J]. Nature, 1999, 399 (6731): 28-29. |
12 | Bausach M , Pera-Titus M , Fite C , et al . Kinetic modeling of the reaction between hydrated lime and SO2 at low temperature[J]. AIChE J., 2005, 51: 1455-1466. |
13 | Zhao T , Hu X , Wu D , et al . Direct synthesis of dimethyl carbonate from carbon dioxide and methanol at room temperature using imidazolium hydrogen carbonate ionic liquid as a recyclable catalyst and dehydrant[J]. ChemSusChem, 2017, 10: 2046-2052. |
14 | Xu Y . CO2 absorption behavior of azole-based protic ionic liquids: influence of the alkalinity and physicochemical properties[J]. Journal of CO2 Utilization, 2017, 19: 1-8. |
15 | Liu X , Gao B , Deng D . SO2 absorption/desorption performance of renewable phenol-based deep eutectic solvents[J]. Separation Science and Technology, 2018, 53(14): 2150-2158. |
16 | Gurkan B E , De la fuente J C , Mindrup E M , et al . Equimolar CO2 absorption by anion-functionalized ionic liquids[J]. J. Am. Chem. Soc., 2010, 132: 2116-2117. |
17 | Joan F B , Burcu E G . Ionic liquids for CO2 capture and emission reduction[J]. J. Phys. Chem. Lett., 2010, 1(24): 3459-3464. |
18 | Brett F G , Juan C F , Burcu E G , et al . Experimental measurements of amine-functionalized anion-tethered ionic liquids with carbon dioxide[J]. Ind. Eng. Chem. Res., 2011, 50: 111-118. |
19 | Goodrich B F , de la Fuente J C , Gurkan B E , et al . Effect of water and temperature on absorption of CO2 by amine-functionalized anion-tethered ionic liquids[J]. J. Phys. Chem. B, 2011, 115: 9140-9150. |
20 | Lin W , Zhou X , Cai J , et al . Anion-functionalized pillararenes for efficient sulfur dioxide capture: significant effect of the anion and the cavity[J]. Chem. Eur. J., 2017, 23: 14143-14148. |
21 | Huang K , Zhang X , Hu X , et al . Hydrophobic protic ionic liquids tethered with tertiary amine group for highly efficient and selective absorption of H2S from CO2 [J]. AIChE J., 2016, 62(12): 4480-4490. |
22 | Eleanor D B , Rebecca D M , Ioanna N , et al . CO2 capture by a task-specific ionic liquid[J]. J. Am. Chem. Soc. , 2002, 124(6): 926-927. |
23 | Kenta F , Masahiro Y , Hiroyuki O . Room temperature ionic liquids from 20 natural amino acids[J]. J. Am. Chem. Soc. , 2005, 127(8): 2398-2399. |
24 | Shiflett M B , Yokozeki A . Chemical absorption of sulfur dioxide in room-temperature ionic liquids[J]. Ind. Eng. Chem. Res., 2010, 49(3): 1370-1377. |
25 | Lin W , Cai Z , Lv X , et al . Significantly enhanced carbon dioxide capture by anion-functionalized liquid pillar[5]arene through multiple-site interactions[J]. Ind. Eng. Chem. Res., 2019, 58: 16894-16900. |
26 | Gurkan B , Goodrich B F , Mindrup E M , et al . Molecular design of high capacity, low viscosity, chemically tunable ionic liquids for CO2 capture[J]. J. Phys. Chem. Lett., 2010, 1(24): 3494-3499. |
27 | Wang C , Luo H , Li H , et al . Tuning the physicochemical properties of diverse phenolic ionic liquids for equimolar CO2 capture by the substituent on the anion[J]. Chem. Eur. J. , 2012, 18: 2153-2160. |
28 | Zhang Y Q , Zhang S J , Lu X M , et al . Dual amino-functionalised phosphonium ionic liquids for CO2 capture[J]. Chem. Eur. J., 2009, 15: 3003-3011. |
29 | Lin W , Pan M , Xiao Q , et al . Tuning the capture of CO2 through entropic effect induced by reversible trans-cis isomerization of light-responsive ionic liquids[J]. J. Phys. Chem. Lett. , 2019, 10: 3346-3351. |
30 | Jiang Y , Liu X , Deng D . Absorption of SO2 in fuloroate ionic liquids/PEG200 mixtures and thermodynamic analysis [J]. J. Chem. Eng. Data, 2018, 63: 259-268. |
31 | Stewart A F , Jennifer M P , Douglas R M . Ionic liquids—an overview[J]. Aust. J. Chem., 2004, 57: 113. |
32 | Wang C , Luo X , Luo X , et al . Tuning the basicity of ionic liquids for equimolar CO2 capture[J]. Angew. Chem., 2011, 123: 5020. |
33 | Craig M T , Dai S , Jiang D . Computational investigation of reactive to nonreactive capture of carbon dioxide by oxygen-containing Lewis bases[J]. J. Phys. Chem. A, 2010, 114: 11761. |
34 | Cui G , Zheng J , Luo X , et al . Tuning anion-functionalized ionic liquids for improved SO2 capture[J]. Angew. Chem. , 2013, 125: 10814-10818. |
35 | Cui G , Wang C , Zheng J , et al . Highly efficient SO2 capture by dual functionalized ionic liquids through a combination of chemical and physical absorption[J]. Chem. Commun., 2012, 48: 2633-2635. |
36 | Chen K , Lin W , Yu X , et al . Designing of anion-functionalized ionic liquids for efficient capture of SO2 from flue gas[J]. AIChE J., 2015, 61: 2028-2034. |
37 | Cui G , Zheng J , Luo X , et al . Tuning anion-functionalized ionic liquids for improved SO2 capture[J]. Angew. Chem. , 2013, 125: 10814-10818. |
[1] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[2] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[3] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[4] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[5] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[6] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[7] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[8] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[9] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[10] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[11] | Xinyuan WU, Qilei LIU, Boyuan CAO, Lei ZHANG, Jian DU. Group2vec: group vector representation and its property prediction applications based on unsupervised machine learning [J]. CIESC Journal, 2023, 74(3): 1187-1194. |
[12] | Jiahui CHEN, Xinze YANG, Guzhong CHEN, Zhen SONG, Zhiwen QI. A critical discussion on developing molecular property prediction models: density of ionic liquids as example [J]. CIESC Journal, 2023, 74(2): 630-641. |
[13] | Ruyi TANG, Hanqian PAN, Xiajun ZHENG, Guangxin ZHANG, Xingping WANG, Xili CUI, Huabin XING. Structural characterization of Z-type perfluoropolyether [J]. CIESC Journal, 2023, 74(1): 479-486. |
[14] | Feng DU, Siqi YIN, Hui LUO, Wenan DENG, Chuan LI, Zhenwei HUANG, Wenjing WANG. Study on size effect of H2 adsorption and dissociation on Mo x S y clusters [J]. CIESC Journal, 2022, 73(9): 3895-3903. |
[15] | Xiaqi YU, Ge FENG, Jinyan ZHAO, Jiayuan LI, Shengwei DENG, Jingnan ZHENG, Wenwen LI, Yaqiu WANG, Lan SHEN, Xu LIU, Weiwei XU, Jianguo WANG, Shibin WANG, Zihao YAO, Chengli MAO. A first-principles study of the interaction between TDI-TMP-T313 and AP [J]. CIESC Journal, 2022, 73(8): 3511-3517. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||