1 |
Bhirde A A, Patel V, Gavard J, et al. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery[J]. ACS Nano, 2009, 3(2): 307-316.
|
2 |
Huang H, Yuan Q, Shah J S, et al. A new family of folate-decorated and carbon nanotube-mediated drug delivery system: synthesis and drug delivery response[J]. Advanced Drug Delivery Reviews, 2011, 63(14/15): 1332-1339.
|
3 |
Ciofani G, Raffa V, Yu J, et al. Boron nitride nanotubes: a novel vector for targeted magnetic drug delivery[J]. Current Nanoscience, 2009, 5(1): 33-38.
|
4 |
Ciofani G. Potential applications of boron nitride nanotubes as drug delivery systems[J]. Expert Opinion on Drug Delivery, 2010, 7(8): 889-893.
|
5 |
Li L, Li L H, Ramakrishnan S, et al. Controlling wettability of boron nitride nanotube films and improved cell proliferation[J]. The Journal of Physical Chemistry C, 2012, 116(34): 18334-18339.
|
6 |
Chen X, Wu P, Rousseas M, et al. Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells[J]. Journal of the American Chemical Society, 2009, 131(3): 890-891.
|
7 |
Yu J, Chen Y, Cheng B M. Dispersion of boron nitride nanotubes in aqueous solution with the help of ionic surfactants[J]. Solid State Communications, 2009, 149(19/20): 763-766.
|
8 |
Tan M L, Choong P F M, Dass C R. Doxorubicin delivery systems based on chitosan for cancer therapy[J]. Journal of Pharmacy and Pharmacology, 2009, 61(2): 131-142.
|
9 |
Xu X Y, Zhou J P, Li L, et al. Preparation of doxorubicin-loaded chitosan polymeric micelle and study on its tissue biodistribution in mice[J]. Acta Pharmaceutica Sinica, 2008, 43(7): 743-748.
|
10 |
Rao W, Wang H, Han J, et al. Chitosan-decorated doxorubicin-encapsulated nanoparticle targets and eliminates tumor reinitiating cancer stem-like cells[J]. ACS Nano, 2015, 9(6): 5725-5740.
|
11 |
Ciofani G, Danti S, D’Alessandro D, et al. Assessing cytotoxicity of boron nitride nanotubes: interference with the MTT assay[J]. Biochemical and Biophysical Research Communications, 2010, 394(2): 405-411.
|
12 |
Li H J, Du J Z, Liu J, et al. Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: instantaneous size switching and improved tumor penetration[J]. ACS Nano, 2016, 10(7): 6753-6761.
|
13 |
Kanamala M, Wilson W R, Yang M, et al. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: a review[J]. Biomaterials, 2016, 85: 152-167.
|
14 |
Katas H, Alpar H O. Development and characterisation of chitosan nanoparticles for siRNA delivery[J]. Journal of Controlled Release, 2006, 115(2): 216-225.
|
15 |
Risbud M V, Hardikar A A, Bhat S V, et al. pH-sensitive freeze-dried chitosan-polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery[J]. Journal of Controlled Release, 2000, 68(1): 23-30.
|
16 |
Jiao J, Li X, Zhang S, et al. Redox and pH dual-responsive PEG and chitosan-conjugated hollow mesoporous silica for controlled drug release[J]. Materials Science and Engineering: C, 2016, 67: 26-33.
|
17 |
Mahdavinia G R, Mosallanezhad A, Soleymani M, et al. Magnetic-and pH-responsive κ-carrageenan/chitosan complexes for controlled release of methotrexate anticancer drug[J]. International Journal of Biological Macromolecules, 2017, 97: 209-217.
|
18 |
Han Y, Elliott J. Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites[J]. Computational Materials Science, 2007, 39(2): 315-323.
|
19 |
Liang L, Hu W, Zhang Z, et al. Theoretic study on dispersion mechanism of boron nitride nanotubes by polynucleotides[J]. Scientific Reports, 2016, 6: 39747.
|
20 |
Li J, Chen C, Zhang J, et al. Molecular dynamics study on loading mechanism of chitosan into boron nitride nanotubes [J]. Journal of Molecular Liquids, 2019, DOI: 10.1016/j.molliq.2019.111753.
DOI
|
21 |
Ferreira M L, Pedroni V I, Alimenti G A, et al. The interaction between water vapor and chitosan(Ⅱ): Computational study[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 315(1/2/3): 241-249.
|
22 |
Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03: revision C. 02 [CP]. Wallingford, CT: Gaussian, Inc., 2004: 26.
|
23 |
Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33-38.
|
24 |
Wu Y, Wagner L K, Aluru N R. Hexagonal boron nitride and water interaction parameters[J]. The Journal of Chemical Physics, 2016, 144(16): 164118.
|
25 |
Darden T, York D, Pedersen L. Particle mesh Ewald: an N⋅log (N) method for Ewald sums in large systems[J]. The Journal of Chemical Physics, 1993, 98(12): 10089-10092.
|
26 |
Bird R B, Hirschfelder J O, Curtiss C F. Molecular Theory of Gases and Liquids[M]. John Wiley, 1954.
|
27 |
Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling[J]. The Journal of Chemical Physics, 2007, 126(1): 014101.
|
28 |
Thomas M, Enciso M, Hilder T A. Insertion mechanism and stability of boron nitride nanotubes in lipid bilayers[J]. The Journal of Physical Chemistry B, 2015, 119(15): 4929-4936.
|
29 |
Torrie G M, Valleau J P. Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling[J]. Journal of Computational Physics, 1977, 23(2): 187-199.
|
30 |
Kumar S, Rosenberg J M, Bouzida D, et al. The weighted histogram analysis method for free-energy calculations on biomolecules (Ⅰ): The method[J]. Journal of Computational Chemistry, 1992, 13(8): 1011-1021.
|