CIESC Journal ›› 2020, Vol. 71 ›› Issue (7): 3114-3122.DOI: 10.11949/0438-1157.20191349
• Separation engineering • Previous Articles Next Articles
Peng WANG1(),Jinglei LIU1(),Shengzhong ZHANG2,Dequan FAN2,Ying ZHANG2,Hong XU1
Received:
2019-11-07
Revised:
2020-04-29
Online:
2020-07-05
Published:
2020-07-05
Contact:
Jinglei LIU
王鹏1(),刘京雷1(),张胜中2,范得权2,张英2,徐宏1
通讯作者:
刘京雷
作者简介:
王鹏(1995—),男,硕士研究生,基金资助:
CLC Number:
Peng WANG, Jinglei LIU, Shengzhong ZHANG, Dequan FAN, Ying ZHANG, Hong XU. Effect of structured 5A molecular sieve adsorption bed structure and process parameters on N2/H2 adsorption performance[J]. CIESC Journal, 2020, 71(7): 3114-3122.
王鹏, 刘京雷, 张胜中, 范得权, 张英, 徐宏. 结构化5A分子筛吸附床结构及工艺参数对N2/H2吸附性能的影响[J]. 化工学报, 2020, 71(7): 3114-3122.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 |
---|---|
l/m | 0.2 |
ρ/(kg·m-3) | 860 |
ε | 0.4 |
T/K | 298 |
25 | |
75 |
Table 1 Adsorption bed model parameters and initial values
参数 | 数值 |
---|---|
l/m | 0.2 |
ρ/(kg·m-3) | 860 |
ε | 0.4 |
T/K | 298 |
25 | |
75 |
吸附剂 | 吸附压力/ MPa | 穿透时间/ min | 吸附量/ (mmol?g-1) | 有效成分吸附量/(mmol?g-1) |
---|---|---|---|---|
结构化5A分子筛 | 0.4 | 9 | 0.59 | 0.94 |
5A分子筛球 | 0.4 | 21 | 1.03 | 1.03 |
Table 2 N2 adsorption capacity of different adsorbent structure
吸附剂 | 吸附压力/ MPa | 穿透时间/ min | 吸附量/ (mmol?g-1) | 有效成分吸附量/(mmol?g-1) |
---|---|---|---|---|
结构化5A分子筛 | 0.4 | 9 | 0.59 | 0.94 |
5A分子筛球 | 0.4 | 21 | 1.03 | 1.03 |
参数 | 数值 |
---|---|
2.265 | |
1.155 | |
1.48 | |
0.117 |
Table 2 Fitting parameters of Langmuir model for N2 and H2 adsorption on 5A molecular sieve
参数 | 数值 |
---|---|
2.265 | |
1.155 | |
1.48 | |
0.117 |
层片间距/mm | 传质系数/s-1 | 穿透吸附量/ (mmol·g-1) | 饱和吸附量/ (mmol·g-1) |
---|---|---|---|
0.2 | 41.2 | 0.165 | 0.602 |
0.5 | 15.5 | 0.142 | 0.597 |
0.8 | 9.1 | 0.102 | 0.591 |
Table 4 Effect of laminate spacing on mass transfer coefficient and adsorbent loading for nitrogen
层片间距/mm | 传质系数/s-1 | 穿透吸附量/ (mmol·g-1) | 饱和吸附量/ (mmol·g-1) |
---|---|---|---|
0.2 | 41.2 | 0.165 | 0.602 |
0.5 | 15.5 | 0.142 | 0.597 |
0.8 | 9.1 | 0.102 | 0.591 |
层片厚度/ mm | 传质系数/ s-1 | 穿透吸附量/ (mmol·g-1) | 饱和吸附量/ (mmol·g-1) |
---|---|---|---|
0.4 | 62.1 | 0.128 | 0.391 |
0.6 | 41.2 | 0.149 | 0.521 |
0.8 | 31.8 | 0.165 | 0.602 |
Table 5 Effect of laminate thickness on mass transfer coefficient and adsorbent loading for nitrogen
层片厚度/ mm | 传质系数/ s-1 | 穿透吸附量/ (mmol·g-1) | 饱和吸附量/ (mmol·g-1) |
---|---|---|---|
0.4 | 62.1 | 0.128 | 0.391 |
0.6 | 41.2 | 0.149 | 0.521 |
0.8 | 31.8 | 0.165 | 0.602 |
吸附压力/ MPa | 传质系数/ s-1 | 穿透吸附量/ (mmol·g-1) | 饱和吸附量/(mmol·g-1) |
---|---|---|---|
0.2 | 47.6 | 0.129 | 0.472 |
0.4 | 41.2 | 0.165 | 0.602 |
0.8 | 33.7 | 0.193 | 0.734 |
Table 6 Effect of adsorption pressure on mass transfer coefficient and adsorbent loading for nitrogen
吸附压力/ MPa | 传质系数/ s-1 | 穿透吸附量/ (mmol·g-1) | 饱和吸附量/(mmol·g-1) |
---|---|---|---|
0.2 | 47.6 | 0.129 | 0.472 |
0.4 | 41.2 | 0.165 | 0.602 |
0.8 | 33.7 | 0.193 | 0.734 |
进气流量/ (ml·min-1) | 传质系数/s-1 | 穿透吸附量/(mmol·g-1) | 饱和吸附量/(mmol·g-1) |
---|---|---|---|
60 | 39.2 | 0.127 | 0.586 |
100 | 41.2 | 0.165 | 0.602 |
140 | 43.1 | 0.142 | 0.583 |
Table 7 Effect of flow rate on mass transfer coefficient and adsorbent loading for nitrogen
进气流量/ (ml·min-1) | 传质系数/s-1 | 穿透吸附量/(mmol·g-1) | 饱和吸附量/(mmol·g-1) |
---|---|---|---|
60 | 39.2 | 0.127 | 0.586 |
100 | 41.2 | 0.165 | 0.602 |
140 | 43.1 | 0.142 | 0.583 |
吸附条件 | 床层利用率/% | 无效层长度/cm | |
---|---|---|---|
层片间距/mm(层片厚度0.8 mm) | 0.2 | 51.1 | 9.78 |
0.5 | 48.2 | 10.36 | |
0.8 | 45.7 | 10.86 | |
层片厚度/mm(层片间距0.2 mm) | 0.4 | 68.2 | 6.36 |
0.6 | 61.8 | 7.64 | |
0.8 | 51.1 | 9.78 | |
吸附压力/MPa(流量100 ml·min-1) | 0.2 | 46.3 | 10.74 |
0.4 | 51.1 | 9.78 | |
0.8 | 57.5 | 8.51 | |
进气流量/(ml·min-1)(压力0.4 MPa) | 60 | 60.1 | 7.98 |
100 | 51.1 | 9.78 | |
140 | 45.2 | 10.96 |
Table 8 Length of unused bed and bed saturation degree
吸附条件 | 床层利用率/% | 无效层长度/cm | |
---|---|---|---|
层片间距/mm(层片厚度0.8 mm) | 0.2 | 51.1 | 9.78 |
0.5 | 48.2 | 10.36 | |
0.8 | 45.7 | 10.86 | |
层片厚度/mm(层片间距0.2 mm) | 0.4 | 68.2 | 6.36 |
0.6 | 61.8 | 7.64 | |
0.8 | 51.1 | 9.78 | |
吸附压力/MPa(流量100 ml·min-1) | 0.2 | 46.3 | 10.74 |
0.4 | 51.1 | 9.78 | |
0.8 | 57.5 | 8.51 | |
进气流量/(ml·min-1)(压力0.4 MPa) | 60 | 60.1 | 7.98 |
100 | 51.1 | 9.78 | |
140 | 45.2 | 10.96 |
1 | 张士元, 谢鹏飞, 田振兴, 等. 膜分离技术在催化重整PSA尾气中氢气回收的应用[J]. 当代化工, 2019, 48(3): 643-646. |
Zhang S Y, Xie P F, Tian Z X, et al. Application of membrane separation technology in hydrogen recovery from catalytic reforming PSA tail gas[J]. Contemporary Chemical Industry, 2019, 48(3): 643-646. | |
2 | 方靓, 肖金生, 皮埃尔·贝纳德, 等. 氢气纯化变压吸附循环的热效应[J]. 工程热物理学报, 2018, 39(5): 168-175. |
Fang L, Xiao J S, Benard P, et al. Thermal effects on pressure swing adsorption cycles for hydrogen purification[J]. Journal of Engineering Thermophysics, 2018, 39(5): 168-175. | |
3 | 田进军, 王绪远, 杨学敏, 等. 从炼油厂含氢气体中回收氢气的研究[J]. 炼油技术与工程, 2016, 46(5): 6-9. |
Tian J J, Wang X Y, Yang X M, et al. Study on recovery of hydrogen from hydrogen containing gas in the refinery[J]. Petroleum Refinery Engineering, 2016, 46(5): 6-9. | |
4 | 曹伟波, 王丽军, 李希. 壁流蜂窝式微填充床制备及变压吸附中的应用[J]. 浙江大学学报(工学版), 2017, 51(4): 777-783. |
Cao W B, Wang L J, Li X. Fabrication of wall-flow honeycomb micro packed bed and application in pressure swing adsorption process[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(4): 777-783. | |
5 | Ichiura H, Kubata Y, Wu Z H, et al. Preparation of zeolite sheet using a papermaking technique[J]. Journal of Materials Science, 2001, 36(4): 913-917. |
6 | Jose A D, Agueda V I, Uguina M A, et al. Adsorption and diffusion of H2, CO, CH4, and CO2 in BPL activated carbon and 13X zeolite: evaluation of performance in pressure swing adsorption hydrogen purification by simulation[J]. Industrial & Engineering Chemistry Research, 2014, 53(40): 15414-15426. |
7 | 郭海亮. 固态吸附剂的探究[J]. 中国石油和化工标准与质量, 2014, 34(6): 269. |
Guo H L. Research on solid adsorbent[J]. China Petroleum and Chemical Standard and Quality, 2014, 34(6): 269. | |
8 | 段雪, 陆军. 二维纳米复合氢氧化物: 结构、组装与功能[M]. 北京: 科学出版社, 2013: 28-35. |
Duan X, Lu J. Two-Dimensional Nanocomposite Hydroxides: Structure, Assembly and Function[M]. Beijing: Science Press, 2013: 28-35. | |
9 | Moran A, Talu O. The role of pressure drop on rapid pressure swing adsorption performance[J]. Industrial & Engineering Chemistry Research, 2017, 56(19): 5715-5723. |
10 | Bowie G K, Denis J C. Pressure swing adsorption with axial or centrifugal compression machinery: US6488747B1[P]. 2002-11-03. |
11 | Arto O, Farid A, Antoni P T, et al. Laminated adsorbents with very rapid CO2 uptake by freeze-casting of zeolites[J]. ACS Applied Materials & Interfaces, 2013, 5(7): 2669-76. |
12 | Rezaei F, Grahn M. Thermal management of structured adsorbents in CO2 capture processes[J]. Industrial & Engineering Chemistry Research, 2016, 51(10): 4025-4034. |
13 | 丁兆阳, 韩治洋, 石文荣, 等. 快速变压吸附制氧动态传质系数模拟分析[J]. 化工学报, 2018, 69(2): 759-768. |
Ding Z Y, Han Z Y, Shi W R, et al. Analysis of dynamic effective mass transfer coefficients of rapid pressure swing adsorption process for oxygen production[J]. CIESC Journal, 2018, 69(2): 759-768. | |
14 | Rezaei F, Webley P. Optimum structured adsorbents for gas separation processes[J]. Chemical Engineering Science, 2009, 64(24): 5182-5191. |
15 | 居沈贵, 刘晓勤, 马正飞, 等. 含CO体系在载铜吸附剂上吸附动态性能(2): 数学模型化研究[J]. 南京化工大学学报, 2003, 22(2): 17-22. |
Ju S G, Liu X Q, Ma Z F, et al. Dynamic adsorption characteristics of mixtures containing CO on adsorbent loaded with cuprous salt (2): Mathematic model research[J]. Journal of Nanjing University of Chemical Technology, 2003, 22(2): 17-22. | |
16 | 康蕊, 厉彦忠, 杨宇杰, 等. 轴向导热对板翅式换热器传热性能的影响[J]. 西安交通大学学报, 2017, (2): 140-148. |
Kang R, Li Y Z, Yang Y J, et al. Performance evaluation of plate-fin heat exchanger considering effect of axial heat conduction[J]. Journal of Xi an Jiaotong University, 2017, (2): 140-148. | |
17 | Chan K C, Chao C Y H, Wu C L. Measurement of properties and performance prediction of the new MWCNT-embedded zeolite 13X/CaCl2 composite adsorbents[J]. International Journal of Heat and Mass Transfer, 2015, 89: 308-319. |
18 | 朱红钧. FLUENT15.0流场分析实战指南[M]. 北京: 人民邮电出版社, 2015: 376-379. |
Zhu H J. FLUENT15.0 Flow Field Analysis Practical Guide[M]. Beijing: Post & Telecom Press, 2015: 376-379. | |
19 | 赵俊霞. 变压吸附空分制氧循环过程模拟研究[D]. 郑州: 郑州大学, 2016. |
Zhao J X. Simulation Research on Pressure Swing Adsorption Cycle of Air Separation for Oxygen[D]. Zhengzhou: Zhengzhou University, 2016. | |
20 | 刘学武, 李文秀, 郑国锋, 等. 13X沸石分子筛低温变压吸附CO2/CH4实验研究[J]. 天然气化工, 2017, (2): 5-8. |
Liu X W, Li W X, Zheng G F, et al. Low-temperature pressure swing adsorption of CO2/CH4 on zeolite 13X[J]. Natural Gas Chemical Industry, 2017, (2): 5-8. | |
21 | Zheng X G, Liu Y S, Liu W H. Two-dimensional modeling of the transport phenomena in the adsorber during pressure swing adsorption process[J]. Industrial & Engineering Chemistry Research, 2010, 49(22): 11814-11824. |
22 | Cybulski A, Moulijn J A. Structured Catalysts and Reactors[M]. 2nd ed. CRC Press, 2006. |
23 | 辜敏, 鲜学福. 煤层气变压吸附分离理论与技术[M]. 北京: 科学出版社, 2015. |
Gu M, Xian X F. The Theory and Technology of Pressure Swing Adsorption for Coal Bed Gas Separation[M]. Beijing: Science Press, 2015. | |
24 | 龙春霞, 丁琴, 关建郁. 吸附等温方程参数估算方法的分析[J]. 离子交换与吸附, 2012, 28(3): 211-220. |
Long C X, Ding Q, Guan J Y. Analysis of estimation method for adsorption isotherm parameters[J]. Ion Exchange and Adsorption, 2012, 28(3): 211-220. | |
25 | 柯斯乐 E L. 扩散流体系统中的传质[M]. 王宇新, 姜忠义, 译. 2版. 北京: 化学工业出版社, 2002: 67-68. |
Kosler E L. Diffusion Mass Transfer in Fluid Systems[M]. Wang Y X, Jiang Z Y, trans. 2nd ed. Beijing: Chemical Industrial Press, 2002: 67-68. | |
26 | 近藤精一, 石川达雄, 安部郁夫. 吸附科学[M]. 李国希, 译. 北京: 化学工业出版社, 2006: 107-108. |
Kondo S, Ishikawa T, Abe I. Adsorption Science[M]. Li G X, trans. Beijing: Chemical Industrial Press, 2006: 107-108. | |
27 | 蒋龙飞, 彭磊, 于萍, 等. 5A分子筛分离工业异己烷中低含量正己烷[J]. 能源化工, 2016, 37(3): 57-62. |
Jiang L F, Peng L, Yu P, et al. Separate small amounts of n-hexane from industrial isohexane on 5A molecular sieves[J]. Energy Chemical Industry, 2016, 37(3): 57-62. | |
28 | Helfferich F G. Principles of adsorption & adsorption processes[J]. AIChE Journal, 1985, 31(3): 523-524. |
29 | 刘京雷, 王浩, 张胜中, 等.泡沫镍负载5A分子筛结构化吸附材料的制备及性能[J].环境工程学报, 2020, 14(1): 165-172. |
Liu J L, Wang H, Zhang S Z, et al. Preparation and properties of structured adsorbent materials with foam nickel loaded with 5A molecular sieve[J]. Chinese Journal of Environmental Engineering, 2020, 14(1): 165-172. | |
30 | Rezaei F, Webley P. Structured adsorbents in gas separation processes[J]. Separation and Purification Technology, 2010, 3(27): 243-256. |
[1] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[2] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[3] | Jieyuan ZHENG, Xianwei ZHANG, Jintao WAN, Hong FAN. Synthesis and curing kinetic analysis of eugenol-based siloxane epoxy resin [J]. CIESC Journal, 2023, 74(2): 924-932. |
[4] | Yujun MA, Xiangjun LIU. Theoretical studies of water recovery from flue gas by using ceramic membrane [J]. CIESC Journal, 2022, 73(9): 4103-4112. |
[5] | Huan ZHOU, Mengli ZHANG, Qing HAO, Si WU, Jie LI, Cunbing XU. Process mechanism and dynamic behaviors of magnesium sulfate type carnallite converting into kainite [J]. CIESC Journal, 2022, 73(9): 3841-3850. |
[6] | Meng HUO, Xiaowan PENG, Jin ZHAO, Qiuwei MA, Chun DENG, Bei LIU, Guangjin CHEN. COSMO-RS based solvent screening and H2/CO separation experiments for CO absorption by ionic liquids [J]. CIESC Journal, 2022, 73(12): 5305-5313. |
[7] | Qianshi SONG, Xiaowei WANG, Wei ZHANG, Xiaohan WANG, Haowen LI, Yu QIAO. Catalytic/inhibitory effects of inorganic elements on biomass char-CO2 gasification reactivity and model construction [J]. CIESC Journal, 2022, 73(11): 5240-5250. |
[8] | ZHANG Muxing, ZHANG Xiaosong, DING Ye, SONG Yi. Molecular dynamics study on influence of interlayer spacing of nanoporous graphene oxide membrane on electrodialysis based air dehumidification [J]. CIESC Journal, 2021, 72(S1): 63-69. |
[9] | ZHANG Mengfei, ZHANG Ling, LI Xiaochuang, ZU Yunqiu, HUANG Ming, SHI Xianzhang, LIU Chuntai. Simulation and experimental study on non-isothermal vulcanization process of thick-walled rubber products [J]. CIESC Journal, 2021, 72(4): 2065-2075. |
[10] | YANG Shi, CAI Yang, LI Changping, LI Xuehui. Preparation of phosphotungstic acid loaded Zr-based metal-organic framework PTA@MOF-808 and its adsorption desulfurization performance [J]. CIESC Journal, 2021, 72(3): 1722-1731. |
[11] | WANG Yuejie, LI Lingling, HE Chunhong. Review on the bioleaching of spent refinery catalysts for metals removal [J]. CIESC Journal, 2021, 72(2): 901-912. |
[12] | Huizhong ZHAO, Min LEI, Tianhou HUANG, Tao LIU, Min ZHANG. Water vapor adsorption performance of composite adsorbent MWCNT/MgCl2 [J]. CIESC Journal, 2020, 71(S1): 272-281. |
[13] | Shuangchen MA, Quan ZHOU, Jianzong CAO, Qi LIU, Wentong CHEN, Shuaijun FAN, Yakun YAO, Chenyu LIN, Caini MA. Modeling and simulation of wet desulfurization system dynamic process [J]. CIESC Journal, 2020, 71(8): 3741-3751. |
[14] | Yan JIANG, Zhe ZHANG. Interaction of VOCs with different hydrophilic properties in biotrickling filters [J]. CIESC Journal, 2020, 71(7): 2973-2982. |
[15] | Xun SONG, Qian FU, Jun LI, Liang ZHANG, Qiang LIAO, Xun ZHU. Numerical simulation of transport characteristics in biocathodes catalyzing carbon dioxide to methane [J]. CIESC Journal, 2020, 71(5): 2273-2282. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||