CIESC Journal ›› 2022, Vol. 73 ›› Issue (11): 5240-5250.DOI: 10.11949/0438-1157.20220906
• Special column for Thermalchemical conversion of biomass and organic solid wastes • Previous Articles Next Articles
Qianshi SONG1(), Xiaowei WANG1,3, Wei ZHANG1,4, Xiaohan WANG1(), Haowen LI1, Yu QIAO2
Received:
2022-06-28
Revised:
2022-09-26
Online:
2022-12-06
Published:
2022-11-05
Contact:
Xiaohan WANG
宋谦石1(), 王潇伟1,3, 张威1,4, 汪小憨1(), 李浩文1, 乔瑜2
通讯作者:
汪小憨
作者简介:
宋谦石(1994—),男,博士,助理研究员,songqs@ms.giec.ac.cn
基金资助:
CLC Number:
Qianshi SONG, Xiaowei WANG, Wei ZHANG, Xiaohan WANG, Haowen LI, Yu QIAO. Catalytic/inhibitory effects of inorganic elements on biomass char-CO2 gasification reactivity and model construction[J]. CIESC Journal, 2022, 73(11): 5240-5250.
宋谦石, 王潇伟, 张威, 汪小憨, 李浩文, 乔瑜. 无机元素对生物质焦炭-CO2气化反应性的催化/抑制作用研究及模型构建[J]. 化工学报, 2022, 73(11): 5240-5250.
Add to citation manager EndNote|Ris|BibTeX
样品名称 | 工业分析 /% (质量,干燥基) | 元素分析 /% (质量,干燥基) | Mv / (g/mol) | ||||||
---|---|---|---|---|---|---|---|---|---|
V | FC | A | C | H | N | S | O① | ||
烟杆 | 79.65 | 13.19 | 7.16 | 44.90 | 5.98 | 1.70 | 0.01 | 40.25 | 72.43 |
玉米芯 | 85.77 | 12.72 | 1.51 | 44.18 | 6.11 | 0.10 | 0.03 | 48.07 | 80.93 |
杉木 | 88.43 | 11.49 | 0.08 | 49.40 | 6.17 | 0.01 | 0.01 | 44.33 | 92.35 |
核桃皮 | 82.17 | 16.38 | 1.45 | 48.01 | 6.14 | 0.37 | 0.02 | 44.01 | 60.21 |
Table 1 Proximate analysis and ultimate analysis of samples
样品名称 | 工业分析 /% (质量,干燥基) | 元素分析 /% (质量,干燥基) | Mv / (g/mol) | ||||||
---|---|---|---|---|---|---|---|---|---|
V | FC | A | C | H | N | S | O① | ||
烟杆 | 79.65 | 13.19 | 7.16 | 44.90 | 5.98 | 1.70 | 0.01 | 40.25 | 72.43 |
玉米芯 | 85.77 | 12.72 | 1.51 | 44.18 | 6.11 | 0.10 | 0.03 | 48.07 | 80.93 |
杉木 | 88.43 | 11.49 | 0.08 | 49.40 | 6.17 | 0.01 | 0.01 | 44.33 | 92.35 |
核桃皮 | 82.17 | 16.38 | 1.45 | 48.01 | 6.14 | 0.37 | 0.02 | 44.01 | 60.21 |
生物质样品 | Nion,K/(mg/kg) | Nion,Na/(mg/kg) | Nion,Ca/(mg/kg) | Nion,Mg/(mg/kg) | Nion,Fe/(mg/kg) | Si/(mg/kg) | Al/(mg/kg) |
---|---|---|---|---|---|---|---|
烟杆 | 309 | 53 | 9717 | 822 | 891 | 7046 | 3254 |
玉米芯 | 434 | 110 | 94 | 159 | 18 | 6136 | 2965 |
杉木 | 103 | 104 | 151 | 121 | 132 | 5465 | 2979 |
核桃皮 | 400 | 5 | 120 | 53 | 323 | 6539 | 2945 |
Table 2 Contents of Si and Al elements and ion-exchanged K, Na, Ca, Mg, Fe elements in biomass samples
生物质样品 | Nion,K/(mg/kg) | Nion,Na/(mg/kg) | Nion,Ca/(mg/kg) | Nion,Mg/(mg/kg) | Nion,Fe/(mg/kg) | Si/(mg/kg) | Al/(mg/kg) |
---|---|---|---|---|---|---|---|
烟杆 | 309 | 53 | 9717 | 822 | 891 | 7046 | 3254 |
玉米芯 | 434 | 110 | 94 | 159 | 18 | 6136 | 2965 |
杉木 | 103 | 104 | 151 | 121 | 132 | 5465 | 2979 |
核桃皮 | 400 | 5 | 120 | 53 | 323 | 6539 | 2945 |
无机元素 | 拟合线斜率 | 催化指数αi,* | 抑制指数αj,* |
---|---|---|---|
K | 0.611 | 1.000 | — |
Na | 0.519 | 0.849 | — |
Ca | 0.752 | 1.231 | — |
Mg | 0.125 | 0.205 | — |
Fe | 0.373 | 0.610 | — |
Si | -0.451 | — | 0.738 |
Al | -0.379 | — | 0.620 |
Table 3 Calculation results of catalysis/inhibition factor of inorganic elements
无机元素 | 拟合线斜率 | 催化指数αi,* | 抑制指数αj,* |
---|---|---|---|
K | 0.611 | 1.000 | — |
Na | 0.519 | 0.849 | — |
Ca | 0.752 | 1.231 | — |
Mg | 0.125 | 0.205 | — |
Fe | 0.373 | 0.610 | — |
Si | -0.451 | — | 0.738 |
Al | -0.379 | — | 0.620 |
生物质样品 | Rc0×103/min-1 | |||
---|---|---|---|---|
873 K | 923 K | 973 K | 1023 K | |
烟杆焦炭 | 9.33 | 26.77 | 68.67 | 113.00 |
玉米芯焦炭 | 4.05 | 15.17 | 35.52 | 48.32 |
杉木焦炭 | 0.28 | 0.73 | 1.80 | 5.44 |
核桃皮焦炭 | 1.45 | 7.60 | 18.11 | 35.90 |
Table 4 Initial gasification rate of char from four biomass samples
生物质样品 | Rc0×103/min-1 | |||
---|---|---|---|---|
873 K | 923 K | 973 K | 1023 K | |
烟杆焦炭 | 9.33 | 26.77 | 68.67 | 113.00 |
玉米芯焦炭 | 4.05 | 15.17 | 35.52 | 48.32 |
杉木焦炭 | 0.28 | 0.73 | 1.80 | 5.44 |
核桃皮焦炭 | 1.45 | 7.60 | 18.11 | 35.90 |
1 | 董存珍, 汪小憨, 曾小军, 等. CO2气氛下生物焦气化反应动力学参数的实验研究 (Ⅰ):活化能[J]. 燃料化学学报, 2014, 42(3): 329-335. |
Dong C Z, Wang X H, Zeng X J, et al. Experimental study on the gasification kinetic parameters of biomass chars under CO2 atmospher (Ⅰ): Activation energy[J]. Journal of Fuel Chemistry and Technology, 2014, 42(3): 329-335. | |
2 | 范洪刚, 赵丹丹, 顾菁, 等. 生物质三组分二元混合热解特性研究[J]. 化工学报, 2021, 72(7): 3788-3800. |
Fan H G, Zhao D D, Gu J, et al. Study on the pyrolysis characteristics of binary mixture of biomass three-component[J]. CIESC Journal, 2021, 72(7): 3788-3800. | |
3 | Wang S R, Dai G X, Yang H P, et al. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review[J]. Progress in Energy and Combustion Science, 2017, 62: 33-86. |
4 | 邵振华, 汪小憨, 曾小军, 等. 基于简单碰撞理论的生物质焦炭气化反应的活化能[J]. 过程工程学报, 2015, 15(4): 599-606. |
Shao Z H, Wang X H, Zeng X J, et al. Gasification activation energy of biomass chars based on simple collision theory[J]. The Chinese Journal of Process Engineering, 2015, 15(4): 599-606. | |
5 | Song Q S, Wang X H, Li H W, et al. Comprehensive study on the influence of preparation conditions on the physicochemical structure of char and the adaptability of the char reactivity model[J]. Chemical Engineering Journal, 2022, 431: 133903. |
6 | 戴贡鑫, 王冠宇, 王凯歌, 等. 2, 6-二甲氧基苯酚热解机理研究[J]. 燃烧科学与技术, 2020, 26(6): 501-506. |
Dai G X, Wang G Y, Wang K G, et al. Mechanism study of 2, 6-dimethoxyphenol pyrolysis[J]. Journal of Combustion Science and Technology, 2020, 26(6): 501-506. | |
7 | Zhao D, Liu H, Sun C L, et al. DFT study of the catalytic effect of Na on the gasification of carbon: CO2 [J]. Combustion and Flame, 2018, 197: 471-486. |
8 | van Duin A C T, Dasgupta S, Lorant F, et al. ReaxFF: a reactive force field for hydrocarbons[J]. The Journal of Physical Chemistry A, 2001, 105(41): 9396-9409. |
9 | Gao M J, Li X X, Guo X, et al. Dynamic migration mechanism of organic oxygen in Fugu coal pyrolysis by large-scale ReaxFF molecular dynamics[J]. Journal of Analytical and Applied Pyrolysis, 2021, 156: 105109. |
10 | Fletcher T H. Review of 30 years of research using the chemical percolation devolatilization model[J]. Energy & Fuels, 2019, 33(12): 12123-12153. |
11 | Yang H, Pisupati S V, Hu H Q. Modeling char surface area evolution during coal pyrolysis: effect of swelling and gasification at high pressures[J]. Proceedings of the Combustion Institute, 2021, 38(3): 4151-4159. |
12 | Lahijani P, Zainal Z A, Mohamed A R, et al. CO2 gasification reactivity of biomass char: catalytic influence of alkali, alkaline earth and transition metal salts[J]. Bioresource Technology, 2013, 144: 288-295. |
13 | Dahou T, Defoort F, Khiari B, et al. Role of inorganics on the biomass char gasification reactivity: a review involving reaction mechanisms and kinetics models[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110136. |
14 | Huang Y Q, Yin X L, Wu C Z, et al. Effects of metal catalysts on CO2 gasification reactivity of biomass char[J]. Biotechnology Advances, 2009, 27(5): 568-572. |
15 | Wang X H, Song Q S, Wang N, et al. Theoretical modelling of the chemical reactivity of fresh biomass chars under non-catalytic conditions[J]. Bioresource Technology, 2019, 273: 244-250. |
16 | Song Q S, Wang X H, Gu C H, et al. A comprehensive model of biomass char-CO2 gasification reactivity with inorganic element catalysis in the kinetic control zone based on TGA analysis[J]. Chemical Engineering Journal, 2020, 398: 125624. |
17 | 冯冬冬, 赵义军, 张宇, 等. AAEM赋存形态对生物质半焦反应活性的影响[J]. 哈尔滨工业大学学报, 2017, 49(7): 69-73. |
Feng D D, Zhao Y J, Zhang Y, et al. Effect of speciation of AAEM species on reactivity of biochar[J]. Journal of Harbin Institute of Technology, 2017, 49(7): 69-73. | |
18 | Yip K, Tian F J, Hayashi J I, et al. Effect of alkali and alkaline earth metallic species on biochar reactivity and syngas compositions during steam gasification[J]. Energy & Fuels, 2010, 24(1): 173-181. |
19 | Li C Z, Sathe C, Kershaw J R, et al. Fates and roles of alkali and alkaline earth metals during the pyrolysis of a Victorian brown coal[J]. Fuel, 2000, 79(3/4): 427-438. |
20 | Jiang L, Hu S, Sun L S, et al. Influence of different demineralization treatments on physicochemical structure and thermal degradation of biomass[J]. Bioresource Technology, 2013, 146: 254-260. |
21 | Yeboah Y D, Xu Y, Sheth A, et al. Catalytic gasification of coal using eutectic salts: identification of eutectics[J]. Carbon, 2003, 41(2): 203-214. |
22 | Matsukata M, Fujikawa T, Kikuchi E, et al. Auger electron spectroscopy and electron probe microanalysis observations of barium and calcium loaded on amorphous carbon under gasification conditions[J]. Energy & Fuels, 1990, 4(4): 365-371. |
23 | Popa T, Fan M H, Argyle M D, et al. Catalytic gasification of a powder river basin coal[J]. Fuel, 2013, 103: 161-170. |
24 | McKee D W, Spiro C L, Kosky P G, et al. Eutectic salt catalysts for graphite and coal char gasification[J]. Fuel, 1985, 64(6): 805-809. |
25 | Onay O. Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor[J]. Fuel Processing Technology, 2007, 88(5): 523-531. |
26 | Di Blasi C. Modeling chemical and physical processes of wood and biomass pyrolysis[J]. Progress in Energy and Combustion Science, 2008, 34(1): 47-90. |
27 | Song Q S, Wang X H, Gu C H, et al. Study on CO2 gasification kinetics of biomass char based on pore structure analysis: theoretical modelling of structural parameter ψ in random pore model[J]. International Journal of Energy Research, 2021, 45(3): 4429-4442. |
28 | 汪小憨, 宋谦石, 曾小军, 等. CO2气氛下生物质焦气化反应动力学模型研究 (Ⅱ): 指数前因子[J]. 燃料化学学报, 2017, 45(5): 529-536. |
Wang X H, Song Q S, Zeng X J, et al. Modeling study on the biomass char gasification kinetics under CO2 atmosphere (Ⅱ): Pre-exponential factor[J]. Journal of Fuel Chemistry and Technology, 2017, 45(5): 529-536. | |
29 | Zhang L X, Kudo S, Tsubouchi N, et al. Catalytic effects of Na and Ca from inexpensive materials on in situ steam gasification of char from rapid pyrolysis of low rank coal in a drop-tube reactor[J]. Fuel Processing Technology, 2013, 113: 1-7. |
30 | Bai B Y, Guo Q J, Li Y K, et al. Catalytic gasification of crushed coke and changes of structural characteristics[J]. Energy & Fuels, 2018, 32(3): 3356-3367. |
31 | Dupont C, Nocquet T, da Costa J A, et al. Kinetic modelling of steam gasification of various woody biomass chars: influence of inorganic elements[J]. Bioresource Technology, 2011, 102(20): 9743-9748. |
32 | Dupont C, Jacob S, Marrakchy K O, et al. How inorganic elements of biomass influence char steam gasification kinetics[J]. Energy, 2016, 109: 430-435. |
33 | North L, Blackmore K, Nesbitt K, et al. Models of coke quality prediction and the relationships to input variables: a review[J]. Fuel, 2018, 219: 446-466. |
34 | 郑明东, 徐静静, 单海燕. 基于催化作用程度的焦炭灰组成催化指数模型研究[J]. 钢铁, 2009, 44(10): 17-20. |
Zheng M D, Xu J J, Shan H Y. Modeling research of mineral catalysis index for coke reactivity upon the degree of catalysis[J]. Iron & Steel, 2009, 44(10): 17-20. | |
35 | 杨俊和, 冯安祖, 杜鹤桂. 矿物质催化指数与焦炭反应性关系[J]. 钢铁, 2001, 36(6): 5-9. |
Yang J H, Feng A Z, Du H G. Relation between mineral catalytic index (MCI) and reactivity of coke[J]. Iron and Steel, 2001, 36(6): 5-9. | |
36 | Aris R. On shape factors for irregular particles (Ⅰ): The steady state problem. Diffusion and reaction[J]. Chemical Engineering Science, 1957, 6(6): 262-268. |
37 | Thiele E W. Relation between catalytic activity and size of particle[J]. Industrial & Engineering Chemistry, 1939, 31(7): 916-920. |
[1] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[2] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[3] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[4] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[5] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[6] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[7] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[8] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[9] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[10] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[11] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[12] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[13] | Maolin DONG, Lidong CHEN, Liulian HUANG, Weibing WU, Hongqi DAI, Huiyang BIAN. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications [J]. CIESC Journal, 2023, 74(6): 2281-2295. |
[14] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
[15] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||