CIESC Journal ›› 2020, Vol. 71 ›› Issue (7): 2973-2982.DOI: 10.11949/0438-1157.20200026
• Reviews and monographs • Previous Articles Next Articles
Received:
2020-01-07
Revised:
2020-04-20
Online:
2020-07-05
Published:
2020-07-05
Contact:
Yan JIANG
通讯作者:
姜岩
作者简介:
姜岩(1971—),男,博士,教授,基金资助:
CLC Number:
Yan JIANG, Zhe ZHANG. Interaction of VOCs with different hydrophilic properties in biotrickling filters[J]. CIESC Journal, 2020, 71(7): 2973-2982.
姜岩, 张哲. 不同亲水特性VOCs在生物滴滤工艺中的作用规律[J]. 化工学报, 2020, 71(7): 2973-2982.
Add to citation manager EndNote|Ris|BibTeX
目标污染物 | 菌种 | 去除优先级 | 拮抗作用 | 作 者 |
---|---|---|---|---|
B、T、E、X、M | Rhodococcus sp. | T>B>X>M>E | E抑制最强,M最弱; M对E抑制最小,对T最大 | Lee等[ |
正己烷、BTEX | 活性污泥 | T、B>E、间/对二甲苯(m/p-X)> 邻二甲苯(o-X)>正己烷 | BTEX明显抑制正己烷,且随BTEX浓度增大而增强 | Amin等[ |
T、o-X、二氯甲烷 | Zoogloea resiniphila HJ1和Methylobacterium rhodesianum H13 | T> o-X >二氯甲烷 | 混合进气浓度越大,相互抑制作用越强 | Hu等[ |
异丙醇、丙酮 | 活性污泥 | 异丙醇>丙酮 | 异丙醇明显抑制丙酮 | Chang等[ |
正丁醇、异丁醇 | 活性污泥 | 正丁醇>异丁醇 | 混合进气浓度越高,抑制异丁醇的生化反应越强 | Chan等[ |
甲醇、乙醇、丙酮、T | Pseudomonas aeruginosa、Bacillus sp.和Chryseobacterium joostei | 乙醇>甲醇>丙酮>T | 甲醇、乙醇对T的降解存在抑制作用 | Balasubramanian等[ |
丙醛、己醇、甲基异丁基酮、T | Paecilomyces variotii(或活性污泥) | 丙醛>己醇>甲基异丁基酮>T | 丙醛抑制其他三种VOCs的降解 | Estrada等[ |
甲醇、α-蒎烯 | 驯化的混合菌群 | 甲醇>α-蒎烯 | 甲醇对α-蒎烯的降解产生拮抗;反之,无影响 | López等[ |
丁酮、甲基异丁基甲酮、T、E、o-X | 活性污泥 | T>E> o-X >甲基异丁甲酮>丁酮 | T、E、o-X抑制丁酮、甲基异丁基甲酮,T尤其明显 | Datta等[ |
Table 1 Antagonism among multiple VOCs
目标污染物 | 菌种 | 去除优先级 | 拮抗作用 | 作 者 |
---|---|---|---|---|
B、T、E、X、M | Rhodococcus sp. | T>B>X>M>E | E抑制最强,M最弱; M对E抑制最小,对T最大 | Lee等[ |
正己烷、BTEX | 活性污泥 | T、B>E、间/对二甲苯(m/p-X)> 邻二甲苯(o-X)>正己烷 | BTEX明显抑制正己烷,且随BTEX浓度增大而增强 | Amin等[ |
T、o-X、二氯甲烷 | Zoogloea resiniphila HJ1和Methylobacterium rhodesianum H13 | T> o-X >二氯甲烷 | 混合进气浓度越大,相互抑制作用越强 | Hu等[ |
异丙醇、丙酮 | 活性污泥 | 异丙醇>丙酮 | 异丙醇明显抑制丙酮 | Chang等[ |
正丁醇、异丁醇 | 活性污泥 | 正丁醇>异丁醇 | 混合进气浓度越高,抑制异丁醇的生化反应越强 | Chan等[ |
甲醇、乙醇、丙酮、T | Pseudomonas aeruginosa、Bacillus sp.和Chryseobacterium joostei | 乙醇>甲醇>丙酮>T | 甲醇、乙醇对T的降解存在抑制作用 | Balasubramanian等[ |
丙醛、己醇、甲基异丁基酮、T | Paecilomyces variotii(或活性污泥) | 丙醛>己醇>甲基异丁基酮>T | 丙醛抑制其他三种VOCs的降解 | Estrada等[ |
甲醇、α-蒎烯 | 驯化的混合菌群 | 甲醇>α-蒎烯 | 甲醇对α-蒎烯的降解产生拮抗;反之,无影响 | López等[ |
丁酮、甲基异丁基甲酮、T、E、o-X | 活性污泥 | T>E> o-X >甲基异丁甲酮>丁酮 | T、E、o-X抑制丁酮、甲基异丁基甲酮,T尤其明显 | Datta等[ |
目标污染物 | 菌种 | 去除优先级 | 交互作用 | 作 者 |
---|---|---|---|---|
BTEX、THF | Pseudomonas oleovorans DT4 | THF>BTEX | T、B抑制THF;而THF存在使m-X、p-X和E实现共代谢 | Zhou等[ |
BTEX | 驯化的混合菌群 | — | T和E抑制B;但B促进T降解;o-X可以与T和B共代谢 | Littlejohns等[ |
T、B、p-X | 驯化的混合菌群 | — | T促进B、p-X降解;T和B无相互作用;p-X增加B降解的延滞期 | Sui等[ |
T、正丙醇 | 驯化的混合菌群 | 正丙醇>T | 低浓度正丙醇促进T降解;当浓度高于1 g/m3则产生抑制 | Dixit等[ |
T、TCE | Pseudomonas putida F1 | T>TCE | 浓度高于2800 μg/L 的T抑制TCE降解,但产生甲苯双加氧酶又有促进作用 | Jung等[ |
T、丙酮、TCE | 驯化的混合菌群 | 丙酮>T>TCE | 甲苯氧化酶促进TCE去除,但丙酮浓度高于1901 mg/m3时,会抑制T和TCE | Den等[ |
甲醇、TCE | G. moniliformis (F. verticillioides)和F.solani | 甲醇>TCE | 甲醇可促进TCE降解;但其加载速率增大时,则产生抑制 | Chheda 等[ |
Table 2 Interaction among multiple VOCs
目标污染物 | 菌种 | 去除优先级 | 交互作用 | 作 者 |
---|---|---|---|---|
BTEX、THF | Pseudomonas oleovorans DT4 | THF>BTEX | T、B抑制THF;而THF存在使m-X、p-X和E实现共代谢 | Zhou等[ |
BTEX | 驯化的混合菌群 | — | T和E抑制B;但B促进T降解;o-X可以与T和B共代谢 | Littlejohns等[ |
T、B、p-X | 驯化的混合菌群 | — | T促进B、p-X降解;T和B无相互作用;p-X增加B降解的延滞期 | Sui等[ |
T、正丙醇 | 驯化的混合菌群 | 正丙醇>T | 低浓度正丙醇促进T降解;当浓度高于1 g/m3则产生抑制 | Dixit等[ |
T、TCE | Pseudomonas putida F1 | T>TCE | 浓度高于2800 μg/L 的T抑制TCE降解,但产生甲苯双加氧酶又有促进作用 | Jung等[ |
T、丙酮、TCE | 驯化的混合菌群 | 丙酮>T>TCE | 甲苯氧化酶促进TCE去除,但丙酮浓度高于1901 mg/m3时,会抑制T和TCE | Den等[ |
甲醇、TCE | G. moniliformis (F. verticillioides)和F.solani | 甲醇>TCE | 甲醇可促进TCE降解;但其加载速率增大时,则产生抑制 | Chheda 等[ |
动力学模型 | 表达式 | 目标污染物 | 文献 |
---|---|---|---|
Monod | T、 E | [ | |
Haldane (Andrews) | ST、E | [ | |
Levenspiel | α-蒎烯、醋酸正丁酯 | [ | |
Edwards | o-X | [ | |
改进Compertz | BTEX中双底物混合 | [ | |
竞争抑制动力学 | B和E、o-X | [ | |
非竞争抑制动力学 | — | [ | |
反竞争抑制动力学 | — | [ | |
无相互作用的Monod动力学 | B和E、o-X | [ | |
带有特定交互作用的抑制动力学(SKIP) | B、T、E、X | [ |
Table 3 Common kinetic models used for the treatment of VOCs
动力学模型 | 表达式 | 目标污染物 | 文献 |
---|---|---|---|
Monod | T、 E | [ | |
Haldane (Andrews) | ST、E | [ | |
Levenspiel | α-蒎烯、醋酸正丁酯 | [ | |
Edwards | o-X | [ | |
改进Compertz | BTEX中双底物混合 | [ | |
竞争抑制动力学 | B和E、o-X | [ | |
非竞争抑制动力学 | — | [ | |
反竞争抑制动力学 | — | [ | |
无相互作用的Monod动力学 | B和E、o-X | [ | |
带有特定交互作用的抑制动力学(SKIP) | B、T、E、X | [ |
1 | Zheng C H, Shen J L, Zhang Y X, et al. Quantitative assessment of industrial VOC emissions in China: historical trend, spatial distribution, uncertainties, and projection[J]. Atmospheric Environment, 2017, 150: 116-125. |
2 | Yang C T, Miao G, Pi Y H, et al. Abatement of various types of VOCs by adsorption/catalytic oxidation: a review[J]. Chemical Engineering Journal, 2019, 370: 1128-1153. |
3 | Dobslaw D, Schulz A, Helbich S, et al. VOC removal and odor abatement by a low-cost plasma enhanced biotrickling filter process[J]. Journal of Environmental Chemical Engineering, 2017, 5(6): 5501-5511. |
4 | Wei Z S, Sun J L, Xie Z R, et al. Removal of gaseous toluene by the combination of photocatalytic oxidation under complex light irradiation of UV and visible light and biological process[J]. Journal of Hazardous Materials, 2010, 177(1/2/3): 814-821. |
5 | Quan Y, Wu H, Yin Z H, et al. Effect of static magnetic field on trichloroethylene removal in a biotrickling filter[J]. Bioresource Technology, 2017, 239: 7-16. |
6 | Wu H, Yan H Y, Quan Y, et al. Recent progress and perspectives in biotrickling filters for VOCs and odorous gases treatment[J]. Journal Environmental Management, 2018, 222: 409-419. |
7 | Rybarczyk P, Szulczyński B, Gębicki J, et al. Treatment of malodorous air in biotrickling filters: a review[J]. Biochemical Engineering Journal, 2019, 141: 146-162. |
8 | Balasubramanian P, Philip L, Bhallamudi S M. Biotrickling filtration of VOC emissions from pharmaceutical industries[J]. Chemical Engineering Journal, 2012, 209: 102-112. |
9 | Cheng Y, He H J, Yang C P, et al. Challenges and solutions for biofiltration of hydrophobic volatile organic compounds[J]. Biotechnology Advances, 2016, 34(6): 1091-1102. |
10 | Deshusses M A, Johnson C T. Development and validation of a simple protocol to rapidly determine the performance of biofilters for VOC treatment[J]. Environmental Science & Technology, 2000, 34(3): 461-467. |
11 | 吕阳, 刘京, 吕炳南, 等, 生物滴滤塔处理甲醛和三苯混合气体的实验研究[J]. 天津大学学报, 2007, 40(10): 1215-1220. |
Lyu Y, Liu J, Lyu B N, et al. Experiment of removing formaldehyde, benzene, toluene and xylene mixed gas by biotricking filter[J]. Journal of Tianjin University, 2007, 40(10): 1215-1220. | |
12 | Reardon K F, Mosteller D C, Bull Rogers J D. Biodegradation kinetics of benzene, toluene, and phenol as single and mixed substrates for Pseudomonas putida F1[J]. Biotechnology and Bioengineering, 2000, 69(4): 385-400. |
13 | Sui H, Li X G, Jiang B. Benzene, toluene and p-xylene interactions and the role of microbial communities in remediation using bioventing[J]. The Canadian Journal of Chemical Engineering, 2005, 83(2): 310-315. |
14 | Jung I G, Park O H. Enhancement of cometabolic biodegradation of trichloroethylene (TCE) gas in biofiltration[J]. Journal of Bioscience and Bioengineering, 2005, 100(4): 657-661. |
15 | Zhang Y F, Liss S N, Allen D G. The effects of methanol on the biofiltration of dimethyl sulfide in inorganic biofilters[J]. Biotechnology and Bioengineering, 2006, 95: 734-743. |
16 | Yang C P, Qian H, Li X, et al. Simultaneous removal of multicomponent VOCs in biofilters[J]. Trends in Biotechnology, 2018, 36(7): 673-685. |
17 | Carvajal A, Akmirza I, Navia D, et al. Anoxic denitrification of BTEX: biodegradation kinetics and pollutant interactions[J]. Journal of Environmental Management, 2018, 214: 125-136. |
18 | Lee E H, Cho K S. Effect of substrate interaction on the degradation of methyl tert-butyl ether, benzene, toluene, ethylbenzene, and xylene by Rhodococcus sp.[J]. Journal of Hazardous Materials, 2009, 167(1/2/3): 669-674. |
19 | Amin M M, Rahimi A, Bina B, et al. Biodegradation of n-hexane as single pollutant and in a mixture with BTEX in a scoria/compost-based biofilter[J]. Process Safety of Environmental Protection, 2017, 107: 508-517. |
20 | Hu J, Zhang L L, Chen J M, et al. Performance and microbial analysis of a biotrickling filter inoculated by a specific bacteria consortium for removal of a simulated mixture of pharmaceutical volatile organic compounds[J]. Chemical Engineering Journal, 2016, 304: 757-765. |
21 | Chang K, Lu C. Biofiltration of isopropyl alcohol and acetone mixtures by a trickle-bed air biofilter[J]. Process Biochemistry, 2003, 39(4): 415-423. |
22 | Chan W C, Lai Y Z. Kinetic characteristics of n-butyl alcohol and iso-butyl alcohol in a composite bead air biofilter[J]. Bioresource Technology, 2008, 99(10): 4380-4385. |
23 | Estrada J M, Hernández S, Muñoz R, et al. A comparative study of fungal and bacterial biofiltration treating a VOC mixture[J]. Journal of Hazardous Materials, 2013, 250: 190-197. |
24 | López M E, Rene E R, Malhautier L, et al. One-stage biotrickling filter for the removal of a mixture of volatile pollutants from air: performance and microbial community analysis[J]. Bioresource Technology, 2013, 138: 245-252. |
25 | Datta A, Philip L, Bhallamudi S M. Modeling the biodegradation kinetics of aromatic and aliphatic volatile pollutant mixture in liquid phase[J]. Chemical Engineering Journal, 2014, 241: 288-300. |
26 | Lee T H, Kim J, Kim M J, et al. Degradation characteristics of methyl ethyl ketone by Pseudomonas sp. KT-3 in liquid culture and biofilter[J]. Chemosphere, 2006, 63(2): 315-322. |
27 | Chan W C, Su M Q. Biofiltration of ethyl acetate and amyl acetate using a composite bead biofilter[J]. Bioresource Technology, 2008, 99(17): 8016-8021. |
28 | Dixit R M, Deshmukh S C, Gadhe A A, et al. Treatment of mixtures of toluene and n-propanol vapours in a compost–woodchip-based biofilter[J]. Environmental Technology, 2012, 33(7): 751-760. |
29 | Paca J, Halecky M, Novak V, et al. Biofiltration of a styrene/acetone vapor mixture in two reactor types under conditions of acetone overloading[J]. Journal of Chemical Technology & Biotechnology, 2012, 87(6): 772-777. |
30 | Padhi S K, Gokhale S. Treatment of gaseous volatile organic compounds using a rotating biological filter[J]. Bioresource Technology, 2017, 244: 270-280. |
31 | Datta A, Philip L. Biodegradation kinetics of toluene, ethylbenzene, and xylene as a mixture of VOCs[M]//Urban Ecology, Water Quality and Climate Change. Cham: Springer, 2018: 275-291. |
32 | Kasi M, Wadhawan T, Simsek H, et al. Enricher reactor—permeable reactive biobarrier approach for removing a mixture of contaminants with substrate interactions[J]. Bioresource Technology, 2013, 146: 336-344. |
33 | Den W, Huang C, Li C H. Effects of cross-substrate interaction on biotrickling filtration for the control of VOC emissions[J]. Chemosphere, 2004, 57(7): 697-709. |
34 | Suttinun O, Luepromchai E, Müller R. Cometabolism of trichloroethylene: concepts, limitations and available strategies for sustained biodegradation[J]. Reviews in Environmental Science and Bio/Technology, 2013, 12(1): 99-114. |
35 | Jiang Y H, Lin X J, Li W H, et al. Study on the kinetics and removal formula of methanethiol by ethanol absorption[J]. Environments, 2016, 3(4): 27. |
36 | Rybarczyk P, Szulczyński B, Gospodarek M, et al. Effects of n-butanol presence, inlet loading, empty bed residence time and starvation periods on the performance of a biotrickling filter removing cyclohexane vapors from air[J]. Chemical Papers, 2020, 74: 1039-1047. |
37 | Zhou Y Y, Chen D Z, Zhu R Y, et al. Substrate interactions during the biodegradation of BTEX and THF mixtures by Pseudomonas oleovorans DT4[J]. Bioresource Technology, 2011, 102(12): 6644-6649. |
38 | Littlejohns J V, Daugulis A J. Kinetics and interactions of BTEX compounds during degradation by a bacterial consortium[J]. Process Biochemistry, 2008, 43(10): 1068-1076. |
39 | Chheda D, Sorial G A. Evaluation of co-metabolic removal of trichloroethylene in a biotrickling filter under acidic conditions[J]. Journal of Environmental Sciences, 2017, 57: 54-61. |
40 | Vergara-Fernández A, Yánez D, Morales P, et al. Biofiltration of benzo [α] pyrene, toluene and formaldehyde in air by a consortium of Rhodococcus erythropolis and Fusarium solani: effect of inlet loads, gas flow and temperature[J]. Chemical Engineering Journal, 2018, 332: 702-710. |
41 | 杨卫兵. 复合菌剂及其高效菌株降解BTX的性能和机理研究[D]. 杭州: 浙江工业大学, 2010. |
Yang W B. Research on performance and mechanism of composite microorganism agent and its high-efficiency microbial strains degrading BTX[D]. Hangzhou: Zhejiang University of Technology, 2010. | |
42 | Vergara-Fernández A, Hernández S, Revah S. Phenomenological model of fungal biofilters for the abatement of hydrophobic VOCs[J]. Biotechnology and Bioengineering, 2008, 101(6): 1182-1192. |
43 | Vergara-Fernández A, Revah S, Moreno-Casas P, et al. Biofiltration of volatile organic compounds using fungi and its conceptual and mathematical modeling[J]. Biotechnology Advances, 2018, 36(4): 1079-1093. |
44 | Cheng Z W, Zhang X M, Lu L C, et al. Ternary mixture biodegraded by a fungal-bacterial consortium: interaction, kinetic analysis, and performance evaluation[J]. Journal of Environmental Engineering, 2019, 145(10): 04019069. |
45 | Chen D Z, Zhao X Y, Miao X P, et al. A solid composite microbial inoculant for the simultaneous removal of volatile organic sulfide compounds: preparation, characterization, and its bioaugmentation of a biotrickling filter[J]. Journal of Hazardous Materials, 2018, 342: 589-596. |
46 | Strauss J M, Riedel K J, Du Plessis C A. Mesophilic and thermophilic BTEX substrate interactions for a toluene-acclimatized biofilter[J]. Applied Microbiology and Biotechnology, 2004, 64(6): 855-861. |
47 | Montebello A M, Fernández M, Almenglo F, et al. Simultaneous methylmercaptan and hydrogen sulfide removal in the desulfurization of biogas in aerobic and anoxic biotrickling filters[J]. Chemical Engineering Journal, 2012, 200: 237-246. |
48 | Chalupa J, Pocik O, Halecky M, et al. Thermophilic waste air treatment of an airborne ethyl acetate/toluene mixture in a bubble column reactor: stability towards temperature changes[J]. Journal of Hazardous Materials, 2020, 384: 120744. |
49 | Ottengraf S P P, van den Oever A H C. Kinetics of organic compound removal from waste gases with a biological filter[J]. Biotechnology and Bioengineering, 1983, 25(12): 3089-3102. |
50 | 孙珮石, 杨显万, 谢蕴国, 等. 生物法净化低浓度挥发性有机废气的动力学问题探讨[J]. 环境科学学报,1999, 19(2): 153-158. |
Sun P S, Yang X W, Xie Y G, et al. Kinetics of purifying waste gases containing volatile organic compounds (VOC) in low concentration by using the biological methods[J]. Acta Scientiae Circumstantiae, 1999, 19(2): 153-158. | |
51 | 孙珮石, 黄兵, 黄若华, 等. 生物法净化挥发性有机废气的吸附-生物膜理论模型与模拟研究[J]. 环境科学, 2002, 23(3): 14-17. |
Sun P S, Huang B, Huang R H, et al. Kinetic model and simulation of the adsorption biofilm theory for the process of biopurify VOC waste gases[J]. Environmental Science, 2002, 23(3): 14-17. | |
52 | Raj I, Vaidya A N, Pandey R A, et al. Recent advancements in the mitigation of obnoxious nitrogenous gases[J]. Journal of Environmental Management, 2018, 205: 319-336. |
53 | San-Valero P, Gabaldón C, Penya-Roja J, et al. Study of mass oxygen transfer in a biotrickling filter for air pollution control[J]. Procedia Engineering, 2012, 42: 1726-1730. |
54 | 薛芳. 生物滴滤法处理正丁醇废气的研究[D]. 上海: 上海师范大学, 2007. |
Xue F. Study on n-butyl alcohol treatment by biotrickling filter[D]. Shanghai: Shanghai Normal University, 2007. | |
55 | San-Valero P, Penya-Roja J M, Álvarez-Hornos F J, et al. Modelling mass transfer properties in a biotrickling filter for the removal of isopropanol[J]. Chemical Engineering Science, 2014, 108: 47-56. |
56 | San-Valero P, Penya-roja J, Álvarez-Hornos F J, et al. Dynamic mathematical modelling of the removal of hydrophilic VOCs by biotrickling filters[J]. International Journal of Environmental Research and Public Health, 2015, 12(1): 746-766. |
57 | Lebrero R, Estrada J M, Muñoz R, et al. Toluene mass transfer characterization in a biotrickling filter[J]. Biochemical Engineering Journal, 2012, 60: 44-49. |
58 | Estrada J M, Dudek A, Muñoz R, et al. Fundamental study on gas–liquid mass transfer in a biotrickling filter packed with polyurethane foam[J]. Journal of Chemical Technology & Biotechnology, 2014, 89(9): 1419-1424. |
59 | Muñoz R, Daugulis A J, Hernández M, et al. Recent advances in two-phase partitioning bioreactors for the treatment of volatile organic compounds[J]. Biotechnology Advances, 2012, 30(6): 1707-1720. |
60 | Parnian P, Zamir S M, Shojaosadati S A. Styrene vapor mass transfer in a biotrickling filter: effects of silicone oil volume fraction, gas-to-liquid flow ratio, and operating temperature[J]. Chemical Engineering Journal, 2016, 284: 926-933. |
61 | Lebrero R, Rodríguez E, Estrada J M, et al. Odor abatement in biotrickling filters: effect of the EBRT on methyl mercaptan and hydrophobic VOCs removal[J]. Bioresource Technology, 2012, 109: 38-45. |
62 | Wu C, Xu P L, Xu B L, et al. o-Xylene removal using one-and two-phase partitioning biotrickling filters: steady/transient-state performance and microbial community[J]. Environmental Technology, 2018, 39(1): 109-119. |
63 | Boojari M A, Zamir S M, Shojaosadati S A. Transient-state strategies for the removal of toluene vapor in a two-liquid phase biotrickling filter: experimental study and neural network analysis[J]. Process Safety and Environmental Protection, 2019, 121: 184-193. |
64 | 姜岩, 张晓华, 杨颖, 等. 基于约氏不动杆菌的萘生物降解特性[J]. 化工学报, 2016, 67(9): 3981-3987. |
Jiang Y, Zhang X H, Yang Y, et al. Napthalene biodegration by Acinetobacter johnsonii[J]. CIESC Journal, 2016, 67(9): 3981-3987. | |
65 | Jiang Y, Qi H, Zhang X M. Co-biodegradation of anthracene and naphthalene by the bacterium Acinetobacter johnsonii[J]. Journal of Environmental Science and Health, Part A, 2018, 53(5): 448-456. |
66 | Jiang Y, Qi H, Zhang X M. Co-biodegradation of naphthalene and phenanthrene by Acinetobacter johnsonii[J]. Polycyclic Aromatic Compounds, 2020, 40(2): 422-431. |
67 | Jiang Y, Zhang Z, Zhang X M. Co-biodegradation of pyrene and other PAHs by the bacterium Acinetobacter johnsonii[J]. Ecotoxicology and Environmental Safety, 2018, 163: 465-470. |
68 | Gallastegui G, Á Ramirez A, Elías A, et al. Performance and macrokinetic analysis of biofiltration of toluene and p-xylene mixtures in a conventional biofilter packed with inert material[J]. Bioresource Technology, 2011, 102(17): 7657-7665. |
69 | Jesus J, Frascari D, Pozdniakova T, et al. Kinetics of aerobic cometabolic biodegradation of chlorinated and brominated aliphatic hydrocarbons: a review[J]. Journal of Hazardous Materials, 2016, 309: 37-52. |
70 | Hazrati H, Shayegan J, Seyedi S M. Biodegradation kinetics and interactions of styrene and ethylbenzene as single and dual substrates for a mixed bacterial culture[J]. Journal of Environmental Health Science and Engineering, 2015, 13(1): 72. |
[1] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[2] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[3] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[4] | Yuanyuan ZHANG, Jiangyuan QU, Xinxin SU, Jing YANG, Kai ZHANG. Gas-liquid mass transfer and reaction characteristics of SNCR denitration in CFB coal-fired unit [J]. CIESC Journal, 2023, 74(6): 2404-2415. |
[5] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[6] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
[7] | Zhiguang QIAN, Yue FAN, Shixue WANG, Like YUE, Jinshan WANG, Yu ZHU. Effect of purging conditions on the impedance relaxation phenomenon and low temperature start-up of PEMFC [J]. CIESC Journal, 2023, 74(3): 1286-1293. |
[8] | Yang HE, Senhu GAO, Qingyun WU, Mingli ZHANG, Tao LONG, Pei NIU, Jinghui GAO, Yingqi MENG. Numerical study on heat and mass transfer characteristics of straight slotted fins under wet conditions [J]. CIESC Journal, 2023, 74(3): 1073-1081. |
[9] | Lufan JIA, Yiying WANG, Yuman DONG, Qinyuan LI, Xin XIE, Hao YUAN, Tao MENG. Aqueous two-phase system based adherent droplet microfluidics for enhanced enzymatic reaction [J]. CIESC Journal, 2023, 74(3): 1239-1246. |
[10] | Wanyuan HE, Yiyu CHEN, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Study on gas-liquid mass transfer characteristics in microchannel with array bulges [J]. CIESC Journal, 2023, 74(2): 690-697. |
[11] | Jieyuan ZHENG, Xianwei ZHANG, Jintao WAN, Hong FAN. Synthesis and curing kinetic analysis of eugenol-based siloxane epoxy resin [J]. CIESC Journal, 2023, 74(2): 924-932. |
[12] | Hao ZHANG, Ziyue WANG, Yujie CHENG, Xiaohui HE, Hongbing JI. Progress in the mass production of single-atom catalysts [J]. CIESC Journal, 2023, 74(1): 276-289. |
[13] | Xuqing WANG, Shenglin YAN, Litao ZHU, Xibao ZHANG, Zhenghong LUO. Research progress on the mass transfer process of CO2 absorption by amines in a packed column [J]. CIESC Journal, 2023, 74(1): 237-256. |
[14] | Huan ZHOU, Mengli ZHANG, Qing HAO, Si WU, Jie LI, Cunbing XU. Process mechanism and dynamic behaviors of magnesium sulfate type carnallite converting into kainite [J]. CIESC Journal, 2022, 73(9): 3841-3850. |
[15] | Yujun MA, Xiangjun LIU. Theoretical studies of water recovery from flue gas by using ceramic membrane [J]. CIESC Journal, 2022, 73(9): 4103-4112. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||