CIESC Journal ›› 2020, Vol. 71 ›› Issue (1): 54-67.DOI: 10.11949/0438-1157.20191376
• Reviews and monographs • Previous Articles Next Articles
Peng ZHANG1,2,4(),Zan CHEN4,Hong WU1,2,Runnan ZHANG1,2,Leixin YANG1,2,Xinda YOU1,2,Ke AN1,2,Zhongyi JIANG1,2,3()
Received:
2019-11-13
Revised:
2019-11-20
Online:
2020-01-05
Published:
2020-01-05
Contact:
Zhongyi JIANG
张鹏1,2,4(),陈赞4,吴洪1,2,张润楠1,2,杨磊鑫1,2,游昕达1,2,安珂1,2,姜忠义1,2,3()
通讯作者:
姜忠义
作者简介:
张鹏(1995—),男,硕士研究生,基金资助:
CLC Number:
Peng ZHANG,Zan CHEN,Hong WU,Runnan ZHANG,Leixin YANG,Xinda YOU,Ke AN,Zhongyi JIANG. Progress in research on channel microenvironment regulation of graphene-based CO2 separation membrane[J]. CIESC Journal, 2020, 71(1): 54-67.
张鹏,陈赞,吴洪,张润楠,杨磊鑫,游昕达,安珂,姜忠义. 石墨烯基CO2分离膜通道微环境调控研究进展[J]. 化工学报, 2020, 71(1): 54-67.
Add to citation manager EndNote|Ris|BibTeX
1 | Grätzel M . Mesoscopic solar cells for electricity and hydrogen production from sunlight[J]. Chemistry Letters, 2004, 34(1): 8-13. |
2 | Seneviratne S I , Donat M G , Pitman A J , et al . Allowable CO2 emissions based on regional and impact-related climate targets[J]. Nature, 2016, 529(7587): 477. |
3 | Sholl D S , Lively R P . Seven chemical separations to change the world[J]. Nature News, 2016, 532(7600): 435. |
4 | Schnoor J L . Ocean acidification: the other problem with CO2 [J]. Environmental Science & Technology, 2014, 48: 10529-10530. |
5 | Stauffer P H , Keating G N , Middleton R S , et al . Greening coal: breakthroughs and challenges in carbon capture and storage[J]. Environmental Science & Technology, 2011, 45: 8597-8604. |
6 | Hunt A J , Sin E H K , Marriott R , et al . Generation, capture, and utilization of industrial carbon dioxide[J]. ChemSusChem: Chemistry & Sustainability Energy & Materials, 2010, 3(3): 306-322. |
7 | Quadrelli R , Peterson S . The energy-climate challenge: recent trends in CO2 emissions from fuel combustion[J]. Environmental Science & Technology, 2007, 35(11): 5938-5952. |
8 | Li S , Jiang X , Yang X , et al . Nanoporous framework “reservoir” maximizing low-molecular-weight enhancer impregnation into CO2-philic membranes for highly-efficient CO2 capture[J]. Journal of Membrane Science, 2019, 570: 278-285. |
9 | Feely R A , Kleypas J A . Ocean acidification: the other CO2 problem[J]. Annual Review of Marine Science, 2009, 1: 169-191. |
10 | Rashidi F , Leisen J , Kim S J , et al . All-nanoporous hybrid membranes: redefining upper limits on molecular separation properties[J]. Angewandte Chemie International Edition, 2019, 58(1): 236-239. |
11 | Alyobi M M M , Barnett C J , Rees P , et al . Modifying the electrical properties of graphene by reversible point-ripple formation[J]. Carbon, 2019, 143: 762-768. |
12 | Bagotia N , Choudhary V , Sharma D K . Synergistic effect of graphene/multiwalled carbon nanotube hybrid fillers on mechanical, electrical and EMI shielding properties of polycarbonate/ethylene methyl acrylate nanocomposites[J]. Composites Part B: Engineering, 2019, 159: 378-388. |
13 | Han S , Meng Q , Araby S , et al . Mechanical and electrical properties of graphene and carbon nanotube reinforced epoxy adhesives: experimental and numerical analysis[J]. Composites Part A: Applied Science and Manufacturing, 2019, 120: 116-126. |
14 | Puértolas J A , Castro M , Morris J A , et al . Tribological and mechanical properties of graphene nanoplatelet/PEEK composites[J]. Carbon, 2019, 141: 107-122. |
15 | Wang S , Wu Y , Zhang N , et al . A highly permeable graphene oxide membrane with fast and selective transport nanochannels for efficient carbon capture[J]. Energy & Environmental Science, 2016, 9(10): 3107-3112. |
16 | Martini L , Chen Z , Mishra N , et al . Structure-dependent electrical properties of graphene nanoribbon devices with graphene electrodes[J]. Carbon, 2019, 146: 36-43. |
17 | Qian C , Zhu T , Zheng W , et al . Improving dielectric properties and thermostability of CaCu3Ti4O12/polyimide composites by employing surface hydroxylated CaCu3Ti4O12 particles[J]. ACS Applied Polymer Materials, 2019, 1(6): 1263-1271. |
18 | Li H , Song Z , Zhang X , et al . Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation[J]. Science, 2013, 342(6154): 95-98. |
19 | Novoselov K S , Geim A K , Morozov S V , et al . Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. |
20 | Zhang C , Zhang W , Mu Y , et al . Facile fabrication of holey graphene oxide paper bonded with sulfonic acid for highly efficient proton conduction[J]. Ionics, 2019, 25(2): 573-581. |
21 | 田甜, 吕敏, 田旸, 等 . 石墨烯的生物安全性研究进展[J]. 科学通报, 2014, 59(20): 1. |
Tian T , Lyu M , Tian Y , et al . Research progress on biosafety of graphene [J]. Science Bulletin, 2014, 59 (20): 1. | |
22 | Choi K , Droudian A , Wyss R M , et al . Multifunctional wafer-scale graphene membranes for fast ultrafiltration and high permeation gas separation[J]. Science Advances, 2018, 4(11): eaau0476. |
23 | Liu Y , Su Y , Guan J , et al . 2D heterostructure membranes with sunlight-driven self-cleaning ability for highly efficient oil-water separation[J]. Advanced Functional Materials, 2018, 28(13): 1706545. |
24 | Yang J , Gong D , Li G , et al . Self-assembly of thiourea-crosslinked graphene oxide framework membranes toward separation of small molecules[J]. Advanced Materials, 2018, 30(16): 1705775. |
25 | Han S , Sun J , He S , et al . The application of graphene-based biomaterials in biomedicine[J]. American Journal of Translational Research, 2019, 11(6): 3246. |
26 | Li H , Song Z , Zhang X , et al . Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation[J]. Science, 2013, 342(6154): 95-98. |
27 | Deng B , Liu Z , Peng H . Toward mass production of CVD graphene films[J]. Advanced Materials, 2019, 31(9): 1800996. |
28 | Lin L , Peng H , Liu Z . Synthesis challenges for graphene industry[J]. Nature Materials, 2019, 18(6): 520. |
29 | Yang K , Huang L , Wang Y , et al . Graphene oxide/nanometal composite membranes for nanofiltration: synthesis, mass transport mechanism, and applications[J]. New Journal of Chemistry, 2019, 43(7): 2846-2860. |
30 | Mi B . Graphene oxide membranes for ionic and molecular sieving[J]. Science, 2014, 343(6172): 740-742. |
31 | Pramanik N B , Regen S L . Layer-by-layer assembly of a polymer of intrinsic microporosity: targeting the CO2/N2 separation problem[J]. Chemical Communications, 2019, 55(30): 4347-4350. |
32 | He G , Huang S , Villalobos L F , et al . High-permeance polymer-functionalized single-layer graphene membranes that surpass the postcombustion carbon capture target[J]. Energy & Environmental Science, 2019, 12: 3305-3312. |
33 | Sun C , Wen B , Bai B . Application of nanoporous graphene membranes in natural gas processing: molecular simulations of CH4/CO2, CH4/H2S and CH4/N2 separation[J]. Chemical Engineering Science, 2015, 138: 616-621. |
34 | Shan M , Xue Q , Jing N , et al . Influence of chemical functionalization on the CO2/N2 separation performance of porous graphene membranes[J]. Nanoscale, 2012, 4(17): 5477-5482. |
35 | Zhao J , Zhao X , Jiang Z , et al . Biomimetic and bioinspired membranes: preparation and application[J]. Progress in Polymer Science, 2014, 39(9): 1668-1720. |
36 | Kumar M , Grzelakowski M , Zilles J , et al . Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z[J]. Proceedings of the National Academy of Sciences, 2007, 104(52): 20719-20724. |
37 | Cao L , He X , Jiang Z , et al . Channel-facilitated molecule and ion transport across polymer composite membranes[J]. Chemical Society Reviews, 2017, 46(22): 6725-6745. |
38 | Su Y , Kravets V G , Wong S L , et al . Impermeable barrier films and protective coatings based on reduced graphene oxide[J]. Nature Communications, 2014, 5: 4843. |
39 | Shen J , Zhang M , Liu G , et al . Facile tailoring of the two-dimensional graphene oxide channels for gas separation[J]. RSC Advances, 2016, 6(59): 54281-54285. |
40 | Kim H W , Yoon H W , Yoon S M , et al . Selective gas transport through few-layered graphene and graphene oxide membranes[J]. Science, 2013, 342(6154): 91-95. |
41 | Yeh C N , Raidongia K , Shao J , et al . On the origin of the stability of graphene oxide membranes in water[J]. Nature Chemistry, 2015, 7(2): 166. |
42 | Hung W S , Tsou C H , De Guzman M , et al . Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing[J]. Chemistry of Materials, 2014, 26(9): 2983-2990. |
43 | Ma S , Tang Z , Fan Y , et al . Surfactant-modified graphene oxide membranes with tunable structure for gas separation[J]. Carbon, 2019, 152: 144-150. |
44 | Robeson L M . The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400. |
45 | Wong K C , Goh P S , Ismail A F . Gas separation performance of thin film nanocomposite membranes incorporated with polymethyl methacrylate grafted multi-walled carbon nanotubes[J]. International Biodeterioration & Biodegradation, 2015, 102: 339-345. |
46 | Zhao Y , Jung B T , Ansaloni L , et al . Multiwalled carbon nanotube mixed matrix membranes containing amines for high pressure CO2/H2 separation[J]. Journal of Membrane Science, 2014, 459: 233-243. |
47 | Shen J , Liu G , Huang K , et al . Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture[J]. Angewandte Chemie International Edition, 2015, 127(2): 588-592. |
48 | Park H B , Kamcev J , Robeson L M , et al . Maximizing the right stuff: the trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): eaab0530. |
49 | Karunakaran M , Shevate R , Kumar M , et al . CO2-selective PEO-PBT (PolyActive™)/graphene oxide composite membranes[J]. Chemical Communications, 2015, 51(75): 14187-14190. |
50 | Shen J , Zhang M , Liu G , et al . Size effects of graphene oxide on mixed matrix membranes for CO2 separation[J]. AIChE Journal, 2016, 62(8): 2843-2852. |
51 | Quan S , Li S W , Xiao Y C , et al . CO2-selective mixed matrix membranes (MMMs) containing graphene oxide (GO) for enhancing sustainable CO2 capture[J]. International Journal of Greenhouse Gas Control, 2017, 56: 22-29. |
52 | Dai Z , Noble R D , Gin D L , et al . Combination of ionic liquids with membrane technology: a new approach for CO2 separation[J]. Journal of Membrane Science, 2016, 497: 1-20. |
53 | Li X , Cheng Y , Zhang H , et al . Efficient CO2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multipermselective mixed matrix membranes[J]. ACS Appl. Mater. Interfaces, 2015, 7: 5528-5537. |
54 | Ali A , Pothu R , Siyal S H , et al . Graphene-based membranes for CO2 separation[J]. Materials Science for Energy Technologies, 2019, 2(1): 83-88. |
55 | Lin H , Freeman B D . Materials selection guidelines for membranes that remove CO2 from gas mixtures[J]. Journal of Molecular Structure, 2005, 739(1/2/3): 57-74. |
56 | Wang S , Xie Y , He G , et al . Graphene oxide membranes with heterogeneous nanodomains for efficient CO2 separations[J]. Angewandte Chemie International Edition, 2017, 56(45): 14246-14251. |
57 | Long C , Gongping L , Wanqin J . Recent progress in two-dimensional-material membranes for gas separation[J]. Acta Physico-Chimica Sinica, 2019, 35(10): 1090-1098. |
58 | Liao J , Wang Z , Gao C , et al . Fabrication of high-performance facilitated transport membranes for CO2 separation[J]. Chemical Science, 2014, 5(7): 2843-2849. |
59 | Guo D , Thee H , da Silva G , et al . Borate-catalyzed carbon dioxide hydration via the carbonic anhydrase mechanism[J]. Environmental Science & Technology, 2011, 45(11): 4802-4807. |
60 | Kim H W , Yoon H W , Yoo B M , et al . High-performance CO2-philic graphene oxide membranes under wet-conditions[J]. Chemical Communications, 2014, 50(88): 13563-13566. |
61 | Fam W , Mansouri J , Li H , et al . Improving CO2 separation performance of thin film composite hollow fiber with Pebax® 1657/ionic liquid gel membranes[J]. Journal of Membrane Science, 2017, 537: 54-68. |
62 | Torralba-Calleja E , Skinner J , Gutiérrez-Tauste D . CO2 capture in ionic liquids: a review of solubilities and experimental methods[J]. Journal of Chemistry, 2013, 2013: 473584. |
63 | Vaidya P D , Kenig E Y . CO2-alkanolamine reaction kinetics: a review of recent studies[J]. Chemical Engineering & Technology: Industrial Chemistry-Plant Equipment-Process Engineering-Biotechnology, 2007, 30(11): 1467-1474. |
64 | Li X , Cheng Y , Zhang H , et al . Efficient CO2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes[J]. ACS Applied Materials & Interfaces, 2015, 7(9): 5528-5537. |
65 | Xin Q , Li Z , Li C , et al . Enhancing the CO2 separation performance of composite membranes by the incorporation of amino acid-functionalized graphene oxide[J]. Journal of Materials Chemistry A, 2015, 3(12): 6629-6641. |
66 | Dai Y , Ruan X , Yan Z , et al . Imidazole functionalized graphene oxide/PEBAX mixed matrix membranes for efficient CO2 capture[J]. Separation and Purification Technology, 2016, 166: 171-180. |
67 | Bara J E , Camper D E , Gin D L , et al . Room-temperature ionic liquids and composite materials: platform technologies for CO2 capture[J]. Accounts of Chemical Research, 2009, 43(1): 152-159. |
68 | Yang Z Z , Zhao Y N , He L N . CO2 chemistry: task-specific ionic liquids for CO2 capture/activation and subsequent conversion[J]. RSC Advances, 2011, 1(4): 545-567. |
69 | Huang S , Dakhchoune M , Luo W , et al . Single-layer graphene membranes by crack-free transfer for gas mixture separation[J]. Nature Communications, 2018, 9: 2632. |
70 | Peng D , Liu Y , Wang S , et al . Facilitated transport membranes by incorporating different divalent metal ions as CO2 carriers[J]. RSC Advances, 2016, 6(69): 65282-65290. |
71 | Wang S , Liu Y , Zhang M , et al . Comparison of facilitat transport behavior and separation properties of membranes with imidazole groups and zinc ions as CO2 carriers[J]. Journal of Membrane Science, 2016, 505: 44-52. |
72 | Ren Y , Peng D , Wu H , et al . Enhanced carbon dioxide flux by catechol-Zn2+ synergistic manipulation of graphene oxide membranes[J]. Chemical Engineering Science, 2019, 195: 230-238. |
[1] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[2] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[3] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[4] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[5] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[6] | Shumin ZHENG, Pengcheng GUO, Jianguo YAN, Shuai WANG, Wenbo LI, Qi ZHOU. Experimental and predictive study on pressure drop of subcooled flow boiling in a mini-channel [J]. CIESC Journal, 2023, 74(4): 1549-1560. |
[7] | Lufan JIA, Yiying WANG, Yuman DONG, Qinyuan LI, Xin XIE, Hao YUAN, Tao MENG. Aqueous two-phase system based adherent droplet microfluidics for enhanced enzymatic reaction [J]. CIESC Journal, 2023, 74(3): 1239-1246. |
[8] | Xueting ZHANG, Jijiang HU, Jing ZHAO, Bogeng LI. Preparation of high molecular weight polypropylene glycol in microchannel reactor [J]. CIESC Journal, 2023, 74(3): 1343-1351. |
[9] | Xingyu YANG, You MA, Chunying ZHU, Taotao FU, Youguang MA. Study on liquid-liquid distribution in comb parallel microchannels [J]. CIESC Journal, 2023, 74(2): 698-706. |
[10] | Xingyu XIANG, Zhongdong WANG, Yanpeng DONG, Shouchuan LI, Chunying ZHU, Youguang MA, Taotao FU. Progress on rheological properties and multiphase flow of yield stress fluids in microchannels [J]. CIESC Journal, 2023, 74(2): 546-558. |
[11] | Wanyuan HE, Yiyu CHEN, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Study on gas-liquid mass transfer characteristics in microchannel with array bulges [J]. CIESC Journal, 2023, 74(2): 690-697. |
[12] | Houchuan YU, Teng REN, Ning ZHANG, Xiaobin JIANG, Yan DAI, Xiaopeng ZHANG, Junjiang BAO, Gaohong HE. Advances in two-dimensional graphene oxide membrane for ion selective transport [J]. CIESC Journal, 2023, 74(1): 303-312. |
[13] | Lin SHENG, Yu CHANG, Jian DENG, Guangsheng LUO. Formation and flow characteristics of ordered bubble swarm in a step T-junction microchannel [J]. CIESC Journal, 2023, 74(1): 416-427. |
[14] | Kai HUANG, Sijie WANG, Haiping SU, Cheng LIAN, Honglai LIU. First principle study on inhibition of lithium dendrites growth by regulating graphene layer spacings [J]. CIESC Journal, 2022, 73(8): 3501-3510. |
[15] | Shuang HAN, Nan ZHANG, Hui WANG, Xuan ZHANG, Jinluan YANG, Manlin ZHANG, Zhichao ZHANG. Preparation and application of chlortetracycline electrochemical sensor based on molecularly imprinting technique [J]. CIESC Journal, 2022, 73(8): 3758-3767. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||