1 |
仇爱波, 周如金, 邱松山, 等. 汽油组分及汽油辛烷值预测方法研究进展[J]. 天然气化工(C1化学与化工), 2014, 39(2): 62-66.
|
|
Qiu A B, Zhou R J, Qiu S S, et al. Review of octane number prediction methods for gasoline components and gasoline[J]. Natural Gas Chemical Industry (C1 Chemistry and Chemical Industry), 2014, 39(2): 62-66.
|
2 |
Perdih A, Perdih F. Chemical interpretation of octane number[J]. Acta Chimica Slovenica, 2006, 53(3): 306-315.
|
3 |
Nikolaou N, Papadopoulos C E, Gaglias I A, et al. A new non-linear calculation method of isomerisation gasoline research octane number based on gas chromatographic data[J]. Fuel, 2004, 83(4): 517-523.
|
4 |
王宁, 温浩, 许志宏, 等. 一种用拓扑指数和基团组成预测烷烃辛烷值的方法[J]. 石油学报(石油加工), 1998, (3): 70-76.
|
|
Wang N, Wen H, Xu Z H, et al. A new prediction method for antiknock of alkanes with topological indices and group composition[J]. Acta Petrolei Sinica (Petroleum Processing Section), 1998, (3): 70-76.
|
5 |
Albahri T A. Structural group contribution method for predicting the octane number of pure hydrocarbon liquids[J]. Industrial & Engineering Chemistry Research, 2003, 42(3): 657-662.
|
6 |
Al-Fahemi J H, Albis N A, Gad E A M. QSPR models for octane number prediction[J]. Journal of Theoretical Chemistry, 2014, 2014: 1-6.
|
7 |
Jeong H I, Lee H, Jeon J H, et al. Determination of research octane number using NIR spectral data and ridge regression[J]. Bulletin of the Korean Chemical Society, 2001, 22(1): 37-42.
|
8 |
Kardamakis A A, Pasadakis N. Autoregressive modeling of near-IR spectra and MLR to predict RON values of gasolines[J]. Fuel, 2010, 89(1): 158-161.
|
9 |
Kelly J J, Barlow C H, Jinguji T M, et al. Prediction of gasoline octane numbers from near-infrared spectral features in the range 660-1215 nm[J]. Analytical Chemistry, 1989, 61(4): 313-320.
|
10 |
Alghouti M A, Aldegs Y S, Amer M W, et al. Determination of motor gasoline adulteration using FTIR spectroscopy and multivariate calibration[J]. Talanta, 2008, 76(5): 1105-1112.
|
11 |
Mendes G, Aleme H G, Barbeira P J, et al. Determination of octane numbers in gasoline by distillation curves and partial least squares regression[J]. Fuel, 2012, 97: 131-136.
|
12 |
王拓, 戴连奎, 马万武. 拉曼光谱结合后向间隔偏最小二乘法用于调和汽油辛烷值定量分析[J]. 分析化学, 2018, 46(4): 623-629.
|
|
Wang T, Dai L K, Ma W W. Quantitative analysis of blended gasoline octane number using raman spectroscopy with backward interval partial least squares method[J]. Chinese Journal of Analytical Chemistry, 2018, 46(4): 623-629.
|
13 |
蒋书波, 林锦国, 程明霄, 等. 基于拉曼技术的汽油辛烷值测定系统设计[J]. 化工学报, 2011, 62(8): 2188-2194.
|
|
Jiang S B, Lin J G, Cheng M X, et al. System design of gasoline octane number detection based on Raman technology[J]. CIESC Journal, 2011, 62(8): 2188-2194.
|
14 |
Murty B S N, Rao R N. Global optimization for prediction of blend composition of gasolines of desired octane number and properties[J]. Fuel Processing Technology, 2004, 85(14): 1595-1602.
|
15 |
Pasadakis N, Gaganis V, Foteinopoulos C, et al. Octane number prediction for gasoline blends[J]. Fuel Processing Technology, 2006, 87(6): 505-509.
|
16 |
Abduljameel A G, van Oudenhoven V, Emwas A, et al. Predicting octane number using nuclear magnetic resonance spectroscopy and artificial neural networks[J]. Energy & Fuels, 2018, 32(5): 6309-6329.
|
17 |
钟英竹. 汽油调合优化神经网络模型的研究[J]. 石油炼制与化工, 2013, 44(5): 71-75.
|
|
Zhong Y Z. Study on neural network model for gasoline blending optimization[J]. Petroleum Processing and Petrochemicals, 2013, 44(5): 71-75.
|
18 |
周小伟,袁俊,杨伯伦. 应用BP神经网络的二次反应清洁汽油辛烷值预测[J]. 西安交通大学学报, 2010, 44(12): 82-86.
|
|
Zhou X W, Yuan J, Yang B L. Prediction of octane number for clean gasoline obtained from secondary reactions based on back-propagation neural network[J]. Journal of Xi an Jiaotong University, 2010, 44(12): 82-86.
|
19 |
Wang W, Li Z, Zhang Q, et al. On-line optimization model design of gasoline blending system under parametric uncertainty[J]. Control & Automation, 2007, 24(7): 1-5.
|
20 |
韩仲志,万剑华,刘康炜.基于近红外光谱的汽油辛烷值预测与模型优化[J].分析试验室, 2015, 34(11): 1268-1271.
|
|
Han Z Z, Wan J H, Liu K W. Model optimization in prediction of gas octane value by NIR[J]. Chinese Journal of Analysis Laboratory, 2015, 34(11): 1268-1271.
|
21 |
Ding S F, Xu L, Su C Y, et al. Using genetic algorithms to optimize artificial neural networks[J]. Journal of Convergence Information Technology, 2010, 5(8): 54-62.
|
22 |
Ling Y, Chai C, Hou W, et al. A new method for nuclear accident source term inversion based on GA-BPNN algorithm[J]. Neural Network World, 2019, 29(2): 71-82.
|
23 |
Outanoute M, Lachhab A, Selmani A, et al. Particle swarm optimization of BP-ANN based soft sensor for greenhouse climate[J]. Journal of Electronic Commerce in Organizations, 2018, 16(1): 72-81.
|
24 |
Mohsen A, Mahyar K A, Ebrahimi W M. An accurate PSO-GA based neural network to model growth of carbon nanotubes[J]. Journal of Nanomaterials, 2017, 2017: 1-6.
|
25 |
Semero Y K, Zhang J, Zheng D, et al. A GA-PSO hybrid algorithm based neural network modeling technique for short-term wind power forecasting[J]. Distributed Generation & Alternative Energy Journal, 2018, 33(4): 26-43.
|
26 |
Esmin A A A, Lambert-Torres G, Alvarenga G B. Hybrid evolutionary algorithm based on PSO and GA mutation[C]// 6th International Conference on Hybrid Itelligent Systems, and 4th Conference on Neuro-Computing and Evolving Intelligence (HIS-NCEI2006).
|
|
Rio de Janeiro, Brazil, 2006: 231-234.
|
27 |
Du S, Li W, Cao K, et al. A learning algorithm of artificial neural network based on GA - PSO[C]// 2006 6th World Congress on Intelligent Control and Automation. Dalian, 2006: 3633-3637.
|
28 |
Bhattacharjee K, Pant M. Hybrid particle swarm optimization-genetic algorithm trained multi-layer perceptron for classification of human glioma from molecular brain neoplasia data[J]. Cognitive Systems Research, 2019, 58: 173-194.
|
29 |
Li G, Zhao F, Guo C, et al. Parallel hybrid PSO-GA algorithm and its application to layout design[C]//International Conference on Natural Computation, 2006: 749-758.
|
30 |
Robinson J T, Sinton S, Rahmatsamii Y, et al. swarm Particle, algorithm genetic, and their hybrids: optimization of a profiled corrugated horn antenna[C]// IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313). San Antonio, TX, USA, 2002: 314-317.
|
31 |
Utkarsh A, Kantha A S, Praveen J, et al. Hybrid GA-PSO trained functional link artificial neural network based channel equalizer[C]// International Conference on Signal Processing & Integrated Networks. IEEE, 2015: 285-290.
|
32 |
Garg H. A hybrid PSO-GA algorithm for constrained optimization problems[J]. Applied Mathematics and Computation, 2016, 274: 292-305.
|
33 |
Anand A, Suganthi L. Hybrid GA-PSO optimization of artificial neural network for forecasting electricity demand[J]. Energies, 2018, 11(4): 728-755.
|
34 |
Yang X M, Yuan J Y, Mao H N, et al. A modified particle swarm optimizer with dynamic adaptation[J]. Applied Mathematics and Computation, 2007, 189(2): 1205-1213.
|
35 |
Ratnaweera A, Halgamuge S K, Watson H C, et al. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 240-255.
|
36 |
高浩, 冷文浩, 须文波. 一种全局收敛PSO算法及其收敛分析[J]. 控制与决策, 2009, 24(2): 196-201.
|
|
Gao H, Leng W H, Xu W B. A global convergence algorithm of particle swarm optimization and its convergence analysis[J]. Control and Decision, 2009, 24(2): 196-201.
|