CIESC Journal ›› 2020, Vol. 71 ›› Issue (3): 1246-1253.DOI: 10.11949/0438-1157.20191507
• Process system engineering • Previous Articles Next Articles
Biming ZHENG(),Bin SHI(),Liexiang YAN
Received:
2019-12-11
Revised:
2019-12-18
Online:
2020-03-05
Published:
2020-03-05
Contact:
Bin SHI
通讯作者:
史彬
作者简介:
郑必鸣(1994—),男,硕士研究生,基金资助:
CLC Number:
Biming ZHENG, Bin SHI, Liexiang YAN. Optimization of batch production scheduling under multi-factor uncertain conditions[J]. CIESC Journal, 2020, 71(3): 1246-1253.
郑必鸣, 史彬, 鄢烈祥. 多因素不确定条件下的间歇生产调度优化[J]. 化工学报, 2020, 71(3): 1246-1253.
Add to citation manager EndNote|Ris|BibTeX
Task | Label(i) | Unit | Label(j) | fixci/USD | varci/(USD·kg-1) | ||||
---|---|---|---|---|---|---|---|---|---|
heating | H | heater | HR | 0.667 | 0.00667 | 100 | — | 150 | 1 |
reaction 1 | R1 | reactor 1 | RR1 | 1.334 | 0.02664 | 50 | — | 100 | 0.5 |
reactor 2 | RR2 | 1.334 | 0.01665 | 80 | — | ||||
reaction 2 | R2 | reactor 1 | RR1 | 1.334 | 0.02664 | 50 | — | 100 | 0.5 |
reactor 2 | RR2 | 1.334 | 0.01665 | 80 | — | ||||
reaction 3 | R3 | reactor 1 | RR1 | 0.667 | 0.01332 | 50 | — | 100 | 0.5 |
reactor 2 | RR2 | 0.667 | 0.008325 | 80 | — | ||||
separation | S | separator | SR | 1.3342 | 0.00666 | 200 | — | 150 | 1 |
Table 1 Process and cost data related to tasks in the case
Task | Label(i) | Unit | Label(j) | fixci/USD | varci/(USD·kg-1) | ||||
---|---|---|---|---|---|---|---|---|---|
heating | H | heater | HR | 0.667 | 0.00667 | 100 | — | 150 | 1 |
reaction 1 | R1 | reactor 1 | RR1 | 1.334 | 0.02664 | 50 | — | 100 | 0.5 |
reactor 2 | RR2 | 1.334 | 0.01665 | 80 | — | ||||
reaction 2 | R2 | reactor 1 | RR1 | 1.334 | 0.02664 | 50 | — | 100 | 0.5 |
reactor 2 | RR2 | 1.334 | 0.01665 | 80 | — | ||||
reaction 3 | R3 | reactor 1 | RR1 | 0.667 | 0.01332 | 50 | — | 100 | 0.5 |
reactor 2 | RR2 | 0.667 | 0.008325 | 80 | — | ||||
separation | S | separator | SR | 1.3342 | 0.00666 | 200 | — | 150 | 1 |
Material | Stis/kg | pris/(USD·kg-1) | dems/kg | |
---|---|---|---|---|
S1 | UL | AA | 1.5 | 0 |
S2 | UL | AA | 1.5 | 0 |
S3 | UL | AA | 1.5 | 0 |
S4 | 100 | 0 | 0 | 0 |
S5 | 200 | 0 | 0 | 0 |
S6 | 150 | 0 | 0 | 0 |
S7 | 200 | 0 | 0 | 0 |
S8 | UL | 0 | 15 | 80 |
S9 | UL | 0 | 15 | 100 |
Table 2 Inventory, initial amounts, price, and demand data for materials in the case
Material | Stis/kg | pris/(USD·kg-1) | dems/kg | |
---|---|---|---|---|
S1 | UL | AA | 1.5 | 0 |
S2 | UL | AA | 1.5 | 0 |
S3 | UL | AA | 1.5 | 0 |
S4 | 100 | 0 | 0 | 0 |
S5 | 200 | 0 | 0 | 0 |
S6 | 150 | 0 | 0 | 0 |
S7 | 200 | 0 | 0 | 0 |
S8 | UL | 0 | 15 | 80 |
S9 | UL | 0 | 15 | 100 |
Item | Demand uncertainty | Process time uncertainty | Price uncertainty | |||
---|---|---|---|---|---|---|
range | ±30% | [0,1] | ±25% | [0,1] | ±5% | [0,5] |
Table 3 Range of fluctuations for three uncertain factors and budget parameters
Item | Demand uncertainty | Process time uncertainty | Price uncertainty | |||
---|---|---|---|---|---|---|
range | ±30% | [0,1] | ±25% | [0,1] | ±5% | [0,5] |
Item | Budget parameter( | |||||||
---|---|---|---|---|---|---|---|---|
(0,0,0) | (0.1,0.1,0.5) | (0.2,0.2,1) | (0.3,0.3,1.5) | (0.4,0.4,2) | (0.5,0.5,2.5) | (0.6,0.6,3) | (0.7,0.7,3.5) | |
profit/USD | 1435.75 | 1382.59 | 1288.46 | 1192.24 | 1100.94 | 1032.97 | 849.39 | / |
CPU time/s | 0.31 | 0.38 | 0.38 | 0.53 | 0.59 | 0.64 | 0.78 | 0.77 |
Table 4 Solution results with all uncertainties
Item | Budget parameter( | |||||||
---|---|---|---|---|---|---|---|---|
(0,0,0) | (0.1,0.1,0.5) | (0.2,0.2,1) | (0.3,0.3,1.5) | (0.4,0.4,2) | (0.5,0.5,2.5) | (0.6,0.6,3) | (0.7,0.7,3.5) | |
profit/USD | 1435.75 | 1382.59 | 1288.46 | 1192.24 | 1100.94 | 1032.97 | 849.39 | / |
CPU time/s | 0.31 | 0.38 | 0.38 | 0.53 | 0.59 | 0.64 | 0.78 | 0.77 |
1 | Lappas N H, Gounaris C E. Multi-stage adjustable robust optimization for process scheduling under uncertainty[J]. AIChE Journal, 2016, 62(5): 1646-1667. |
2 | Shang C, You F. Distributionally robust optimization for planning and scheduling under uncertainty[J]. Computers & Chemical Engineering, 2018, 110: 53-68. |
3 | Dias L S, Ierapetritou M G. Integration of scheduling and control under uncertainties: review and challenges[J]. Chemical Engineering Research and Design, 2016, 116: 98-113. |
4 | Shi H, You F. A computational framework and solution algorithms for two-stage adaptive robust scheduling of batch manufacturing processes under uncertainty[J]. AIChE Journal, 2016, 62(3): 687-703. |
5 | 李祖奎, Ierapetritou M, 薛美盛. 过程工业不确定条件下的计划与调度优化[J]. 化工进展, 2009, 28(7): 1122-1128. |
Li Z K, Ierapetritou M, Xue M S. Planning and scheduling under uncertainty in process industry[J]. Chemical Industry and Engineering Progress, 2009, 28(7): 1122-1128. | |
6 | Ning C, You F. Data-driven adaptive nested robust optimization: general modeling framework and efficient computational algorithm for decision making under uncertainty[J]. AIChE Journal, 2017, 63(9): 3790-3817. |
7 | Chen Y, Yuan Z, Chen B. Process optimization with consideration of uncertainties—an overview[J]. Chinese Journal of Chemical Engineering, 2018, 26(8): 108-114. |
8 | Bonfill A, Bagajewicz M, Espuna A, et al. Risk management in the scheduling of batch plants under uncertain market demand[J]. Industrial & Engineering Chemistry Research, 2004, 43(3): 741-750. |
9 | Balasubramanian J, Grossmann I E. A novel branch and bound algorithm for scheduling flowshop plants with uncertain processing times[J]. Computers & Chemical Engineering, 2002, 26(1): 41-57. |
10 | 王飞, 孙力, 董世兴. 生产需求不确定的间歇生产调度决策[J]. 化工进展, 2009, 28(S1): 565-568. |
Wang F, Sun L, Dong S X. Scheduling decision of batch production with uncertain production demand[J]. Chemical Industry and Engineering Progress, 2009, 28(S1): 565-568. | |
11 | 耿佳灿, 顾幸生. 不确定条件下中间存储时间有限多产品间歇生产过程调度[J]. 化工学报, 2015, 66(1): 357-365. |
Geng J C, Gu X S. Time-constrained intermediate storage multiproduct batch process scheduling with uncertainty[J]. CIESC Journal, 2015, 66(1): 357-365. | |
12 | 丁然, 李歧强, 孙同景. 不确定处理时间批处理过程的鲁棒调度新策略[J]. 系统工程理论与实践, 2006, 26(4): 78-84. |
Ding R, Li Q Q, Sun T J. Novel robust scheduling strategy for batch process with uncertain processing time[J]. System Engineering-Theory & Practice, 2006, 26 (4): 78–84. | |
13 | Janak S L, Lin X, Floudas C A. A new robust optimization approach for scheduling under uncertainty(II): Uncertainty with known probability distribution[J]. Computers & Chemical Engineering, 2007, 28(6): 1069-1085. |
14 | 田野, 董宏光, 邹雄, 等. 考虑需求不确定性的化工生产计划与调度集成[J]. 化工学报, 2014, 65(9): 3552-3558. |
Tian Y, Dong H G, Zou X, et al. Chemical production planning and scheduling integration under demand uncertainty[J]. CIESC Journal, 2014, 65(9): 3552-3558. | |
15 | 陈浩, 孙力, 贺高红. 间歇生产调度优化模型的分周期逼近算法[J]. 计算机与应用化学, 2012, 29(1): 45-48. |
Chen H, Sun L, He G H. Periodic approximation algorithm to solve batch plant scheduling model[J]. Computers & Applied Chemistry, 2012, 29(1): 45-48. | |
16 | 双兵, 顾幸生. 需求量不确定条件下连续过程生产调度[J]. 华东理工大学学报, 2004,30(2): 183-187. |
Shuang B, Gu X S. Scheduling for continuous production processes with demand uncertainty[J]. Journal of East China University of Science and Technology, 2004,30(2): 183-187. | |
17 | Li Z, Ding R, Floudas C A. A comparative theoretical and computational study on robust counterpart optimization(I): Robust linear optimization and robust mixed integer linear optimization[J]. Industrial & Engineering Chemistry Research, 2011, 50(18): 10567-10603. |
18 | Ben-Tal A, Ghaoui L E, Nemirovski A. Robust Optimization[M]. Princeton: Princeton University Press, 2009: 3-25. |
19 | Li Z, Ierapetritou M G. Robust optimization for process scheduling under uncertainty[J]. Industrial & Engineering Chemistry Research, 2008, 47(12): 4148-4157. |
20 | Hazaras M J, Swartz C L E, Marlin T E. Flexible maintenance within a continuous-time state-task network framework[J]. Computers & Chemical Engineering, 2012, 46(11): 167-177. |
21 | Shaik M A, Floudas C A. Unification of STN and RTN based models for short-term scheduling of batch plants with shared resources[J]. Chemical Engineering Science, 2013, 98(19): 104-124. |
22 | Ierapetritou M G, Floudas C A. Effective continuous-time formulation for short-term scheduling(1): Multipurpose batch processes[J]. Industrial & Engineering Chemistry Research, 1998, 37(11): 4341-4359. |
23 | Chen G H, Yan L X, Shi B. Modeling and optimization for short term scheduling of multipurpose batch plants[J]. Chinese Journal of Chemical Engineering, 2014, 22(6): 682-689. |
24 | Harjunkoski I, Maravelias C T, Bongers P, et al. Scope for industrial applications of production scheduling models and solution methods[J]. Computers & Chemical Engineering, 2014, 62: 161-193. |
25 | Lagzi S, Lee D Y, Fukasawa R, et al. A computational study of continuous and discrete time formulations for a class of short-term scheduling problems for multipurpose plants[J]. Industrial & Engineering Chemistry Research, 2017, 56(31): 8940-8953. |
26 | Lagzi S, Fukasawa R, Ricardez S L. A multitasking continuous time formulation for short-term scheduling of operations in multipurpose plants[J]. Computers & Chemical Engineering, 2017, 97: 135-146. |
27 | Bertsimas D, Sim M. Robust discrete optimization and network flows[J]. Mathematical Programming, 2003, 98(1/2/3): 49-71. |
28 | Sundaramoorthy A, Karimi I A. A simpler better slot-based continuous-time formulation for short-term scheduling in multipurpose batch plants[J]. Chemical Engineering Science, 2005, 60(10): 2679-2702. |
29 | Li Z, Ierapetritou M G. Integrated production planning and scheduling using a decomposition framework[J]. Chemical Engineering Science, 2009, 64(16): 3585-3597. |
30 | Li J, Floudas C A. Optimal event point determination for short-term scheduling of multipurpose batch plants via unit-specific event-based continuous-time approaches[J]. Industrial & Engineering Chemistry Research, 2010, 49(16): 7446-7469. |
[1] | Xiaoyong GAO, Fuyu HUANG, Wanpeng ZHENG, Diao PENG, Yixu YANG, Dexian HUANG. Scheduling optimization of refinery and chemical production process considering the safety and stability of scheduling operation [J]. CIESC Journal, 2023, 74(4): 1619-1629. |
[2] | Biqiang LIU, Haishan CAO. Adsorption measurement method based on flow calibration and its error analysis [J]. CIESC Journal, 2022, 73(4): 1597-1605. |
[3] | Wanpeng ZHENG, Xiaoyong GAO, Guiyao ZHU, Xin ZUO. Research progress on crude oil operation optimization [J]. CIESC Journal, 2021, 72(11): 5481-5501. |
[4] | Hongwei GUAN, Lingjian YE, Feifan SHEN, De GU, Zhihuan SONG. Dynamic real-time optimization for gold cyanidation leaching process using economic model predictive control [J]. CIESC Journal, 2020, 71(3): 1122-1130. |
[5] | Chenying LI, Linlin LIU, Lei ZHANG, Siwen GU, Jian DU. Controllable heat exchanger network synthesis under uncertainty via multi-scenario optimization [J]. CIESC Journal, 2020, 71(3): 1154-1162. |
[6] | Xiangyue WANG, Xiaojun ZHOU, Chunhua YANG. Chance constrained optimization for copper removal process under uncertainty in zinc hydrometallurgy [J]. CIESC Journal, 2020, 71(3): 1226-1233. |
[7] | Lei YU, Xiaogang DENG, Yuping CAO, Kaiqi LU. Fault detection method of unequal-length batch process based on VGDTW-MCVA [J]. CIESC Journal, 2019, 70(9): 3441-3448. |
[8] | Xiaozheng GUO, Linlin LIU, Lei ZHANG, Jian DU. Property integration of batch process based on interceptors in semi-continuous operation [J]. CIESC Journal, 2019, 70(2): 516-524. |
[9] | Limin WANG, Libin LU, Furong GAO, Donghua ZHOU. Infinite horizon linear quadratic hybrid fault-tolerant control for multi-phase batch process [J]. CIESC Journal, 2019, 70(2): 541-547. |
[10] | Xiangkun MENG, Guoming CHEN, Chunliang ZHENG, Xiangfei WU, Gaogeng ZHU. Risk evaluation model of deepwater drilling blowout accident based on risk entropy and complex network [J]. CIESC Journal, 2019, 70(1): 388-397. |
[11] | GAO Xuejin, HUANG Mengdan, QI Yongsheng, WANG Pu. Batch process monitoring using multiphase AR-PCA optimized with PDPSO [J]. CIESC Journal, 2018, 69(9): 3914-3923. |
[12] | ZHANG Lei, ZHANG Xiaogang, CHEN Hua. Soft sensors for multi-stage batch processes based on Gath-Geva algorithm and kernel extreme learning machine [J]. CIESC Journal, 2018, 69(6): 2576-2585. |
[13] | YAN Xueli, HAN Yuxin, GU Xingsheng. Improved schedule model for batch production by state unit network [J]. CIESC Journal, 2018, 69(3): 913-922. |
[14] | CHANG Peng, QIAO Junfei, WANG Pu, GAO Xuejin, LI Zheng. Monitoring non-Gaussian and non-linear batch process based on multi-way kernel entropy component analysis [J]. CIESC Journal, 2018, 69(3): 1200-1206. |
[15] | LIU Xiaofeng, LUAN Xiaoli, LIU Fei. Recursive optimization of batch processes based on load cosine similarity in latent variable space [J]. CIESC Journal, 2018, 69(3): 1167-1172. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||