[1] |
GUO H, LI H G. On-line batch process monitoring with improved multi-way independent component analysis[J]. Chinese Journal of Chemical Engineering, 2013, 21(3):263-270.
|
[2] |
NOMIKOS P, MACGREGOR J F. Monitoring batch processes using multiway principal component analysis[J]. AIChE Journal, 1994, 40(8):1361-1375.
|
[3] |
MACGREGOR J F, JAECKLE C, KIPARISSIDES C, et al. Process monitoring and diagnosis by multiblock PLS methods[J]. AIChE Journal, 1994, 40(5):826-838.
|
[4] |
LOU Z J, SHEN D, WANG Y Q. Preliminary-summation-based principal component analysis for non-Gaussian processes[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 146:270-289.
|
[5] |
贾润达, 毛志忠, 王福利. 基于KPLS模型的间歇过程产品质量控制[J]. 化工学报, 2013, 64(4):1332-1339. JIA R D, MAO Z Z, WANG F L. KPLS model based product quality control for batch processes[J]. CIESC Journal, 2013, 64(4):1332-1339.
|
[6] |
GE Z Q, SONG Z H, ZHAO L P, et al. Two-level PLS model for quality prediction of multiphase batch processes[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 130:29-36.
|
[7] |
QIN S J. Survey on data-driven industrial process monitoring and diagnosis[J]. Annual Reviews in Control, 2012, 36(2):220-234.
|
[8] |
LUO L J, BAO S Y, MAO J F, et al. Quality prediction and quality-relevant monitoring with multilinear PLS for batch processes[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 150:9-22.
|
[9] |
LIU Y, ZHAO S, WANG Q, et al. Learning more distinctive representation by enhanced PCA network[J]. Neurocomputing, 2017, 275:924-931.
|
[10] |
LIU Y, LIANG Y, GAO Z, et al. Online flooding supervision in packed towers:an integrated data-driven statistical monitoring method[J]. Chemical Engineering and Technology, 2018, 41(3):436-446.
|
[11] |
LIU Y, HSEUH B F, GAO Z, et al. Flooding prognosis in packed columns by assessing degree of steadiness (DOS) of process variable trajectory[J]. Industrial and Engineering Chemistry Research, 2016, 55(40):10744-10750.
|
[12] |
LI H G, SONG R Q, LIU J W. Low-dimensional feature fusion strategy for overlapping neuron spike sorting[J]. Neurocomputing, 2018, 281:152-159.
|
[13] |
WANG F, WANG Q, NIE F, et al. Efficient tree classifiers for large scale datasets[J]. Neurocomputing, 2018, 284:70-79.
|
[14] |
WANG Z, HU H, ZHANG L, et al. Discriminatively guided filtering (DGF) for hyperspectral image classification[J]. Neurocomputing, 2017, 275:1981-1987.
|
[15] |
GE Z Q, SONG Z H, GAO F R. Review of recent research on data-based process monitoring[J]. Industrial and Engineering Chemistry Research, 2013, 52:3543-3562.
|
[16] |
CAI F, TIAN X M, CHEN S. A process monitoring method based on noisy independent component analysis[J]. Neurocomputing, 2014, 127:231-246.
|
[17] |
QIN Y, ZHAO C H, WANG X Z, et al. Subspace decomposition and critical phase selection based cumulative quality analysis for multiphase batch processes[J]. Chemical Engineering Science, 2017, 166:130-143.
|
[18] |
FEI Z S, LIU K L. Online process monitoring for complex systems with dynamic weighted principal component analysis[J]. Chinese Journal of Chemical Engineering, 2016, 24(6):775-786.
|
[19] |
张子羿, 胡益, 侍洪波. 一种基于聚类方法的多阶段间歇过程监控方法[J]. 化工学报, 2013, 64(12):4522-4528. ZHANG Z Y, HU Y, SHI H B. Multi-stage batch process monitoring based on a clustering method[J]. CIESC Journal, 2013, 64(12):4522-4528.
|
[20] |
QIN S J. Process data analytics in the era of big data[J]. AIChE Journal, 2014, 60(9):3092-3100.
|
[21] |
LÜ Z M, YAN X F, JIANG Q C. Batch process monitoring based on multiple-phase online sorting principal component analysis[J]. ISA Transactions, 2016, 64:342-352.
|
[22] |
LU N Y, GAO F R, WANG F L. Sub-PCA modeling and on-line monitoring strategy for batch processes[J]. AIChE Journal, 2004, 50(1):255-259.
|
[23] |
ZHANG C, ZHAO H T. Order clustering based sub-stage division and its application to batch process monitoring[C]//Control Conference. IEEE, 2016:6482-6487.
|
[24] |
YU J, QIN S J. Multiway Gaussian mixture model based multiphase batch process monitoring[J]. Industrial and Engineering Chemistry Research, 2009, 48(18):8585-8594
|
[25] |
FREY B J, DUECK D. Clustering by passing messages between data points[J]. Science, 2007, 315:972-976.
|
[26] |
CHOI S W, MORRIS J, LEE I B. Dynamic model-based batch process monitoring[J]. Chemical Engineering Science, 2008, 63:622-636.
|
[27] |
胡永兵, 高学金, 李亚芬, 等. 基于仿射传播聚类子集主元分析的间歇过程监测方法[J]. 化工学报, 2016, 5(5):1989-1997. HU Y B, GAO X J, LI Y F, et al. Clean production of pharmaceutical crystallization[J]. CIESC Journal, 2016, 5(5):1989-1997.
|
[28] |
王志文, 刘毅, 高增梁. 时变间歇过程的2D-PID自适应控制方法[J]. 化工学报, 2016, 67(3):991-997. WANG Z W, LIU Y, GAO Z L. 2D-PID adaptive control method for time-varying batch processes[J]. CIESC Journal, 2016, 67(3):991-997.
|
[29] |
高学金, 崔宁, 张亚潮, 等. 基于粒子群优化MICA的间歇过程故障监测[J].仪器仪表学报, 2015, 36(1):152-159. GAO X J, CUI N, ZHANG Y C, et al. Subset multiway principal component analysis monitoring for batch process based on affinity propagation clustering[J]. Chinese Journal of Scientific Instrument, 2015, 36(1):152-159.
|
[30] |
YU H H, CHEN Y Y, HASSAN G S, et al. Prediction of the temperature in a Chinese solar greenhouse based on LSSVM optimized by improved PSO[J]. Computers and Electronics in Agriculture, 2016, 122:94-102.
|