CIESC Journal ›› 2018, Vol. 69 ›› Issue (9): 3914-3923.DOI: 10.11949/j.issn.0438-1157.20180369

Previous Articles     Next Articles

Batch process monitoring using multiphase AR-PCA optimized with PDPSO

GAO Xuejin1,2,3,4, HUANG Mengdan1,2,3,4, QI Yongsheng5, WANG Pu1,2,3,4   

  1. 1. Department of Information Science, Beijing University of Technology, Beijing 100124, China;
    2. Engineering Research Center of Digital Community, Ministry of Education, Beijing 100124, China;
    3. Beijing Laboratory for Urban Mass Transit, Beijing 100124, China;
    4. Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing 100124, China;
    5. School of Electric Power, Inner Mongolia University of Technology, Huhhot 010051, Inner Mongolia, China
  • Received:2018-04-03 Revised:2018-06-17 Online:2018-09-05 Published:2018-09-05
  • Supported by:

    supported by the National Natural Science Foundation of China (61640312,61763037), the Natural Science Foundation of Beijing (4172007) and Beijing Municipal Education Commission Fund.

PDPSO优化多阶段AR-PCA间歇过程监测方法

高学金1,2,3,4, 黄梦丹1,2,3,4, 齐咏生5, 王普1,2,3,4   

  1. 1. 北京工业大学信息学部, 北京 100124;
    2. 数字社区教育部工程研究中心, 北京 100124;
    3. 城市轨道交通北京实验室, 北京 100124;
    4. 计算智能与智能系统北京市重点实验室, 北京 100124;
    5. 内蒙古工业大学电力学院, 内蒙古 呼和浩特 010051
  • 通讯作者: 齐咏生
  • 基金资助:

    国家自然科学基金项目(61640312,61763037);北京市自然科学基金项目(4172007);北京市教育委员会资助项目。

Abstract:

To overcome the problem of batch process caused by the traditional process dynamics multistage characteristic, the multiphase auto regression-principal component analysis (AR-PCA) monitoring method is proposed based on affine propagation (AP) clustering optimized with a population diversity-based particle swarm optimization algorithm (PDPSO). The method introduced PDPSO method to improve the AP clustering. It avoided the blindness of common method that indirectly chose the preference based on the clustering evaluation index. Then we established the AR-PCA model for the data samples of the multiphase fermentation process to eliminate the dynamic characteristics of each stage and the auto-and-cross-correlation between variables. Finally, the PCA model is established for the residual of the AR model for fault monitoring of the batch process. The method is applied to the process of penicillin fermentation. Experiments show that the method can effectively divide the process into different phases and reduce the false and leak alarms.

Key words: batch process, population diversity, particle swarm optimization, affine propagation clustering, autoregressive principal component analysis

摘要:

针对间歇过程固有的多阶段特性和动态性,提出基于种群多样性的自适应惯性权重粒子群算法(PDPSO)优化的多阶段自回归主元分析(AR-PCA)间歇过程监测方法。该方法引入了PDPSO算法指导AP聚类偏向参数的选取,避免了传统方法依据聚类评价指标选取参考度时的盲目性。对PDPSO优化AP聚类的多阶段发酵过程的数据样本建立AR-PCA模型能够消除各阶段的动态性及变量之间的自相关和互相关影响。最后,对自回归(AR)模型的残差矩阵建立主成分分析(PCA)模型用于发酵过程监测。将该方法应用到青霉素发酵过程,并与传统方法进行对比,结果表明,该方法能够有效进行间歇过程阶段划分并降低故障的漏报和误报。

关键词: 间歇过程, 种群多样性, 粒子群优化, 仿射传播聚类, 自回归主元分析

CLC Number: