[1] |
LIU J L. On-line soft sensor for polyethylene process with multiple production grades[J]. Control Engineering Practice, 2007, 15(7):769-778.
|
[2] |
KADLEC P, GABRYS B, STRANDT S. Data-driven soft sensors in the process industry[J]. Computers & Chemical Engineering, 2009, 33(4):795-814.
|
[3] |
KADLEC P, GRBIC R, GABRYS B. Review of adaptation mechanisms for data-driven soft sensors[J]. Computers & Chemical Engineering, 2011, 35(1):1-24.
|
[4] |
BISHOP C M. Pattern Recognition and Machine Learning[M]. NewYork:Springer, 2006.
|
[5] |
HUANG G B, ZHOU H M, DING X J, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2012, 42(2):513-529.
|
[6] |
HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine:theory and applications[J]. Neurocomputing, 2006, 70(1/2/3):489-501.
|
[7] |
HUANG G, HUANG G B, SONG S, et al. Trends in extreme learning machines:a review[J]. Neural Networks, 2015, 61:32-48.
|
[8] |
CHEN H, ZHANG X G, HONG P Y, et al. Recognition of the temperature condition of a rotary kiln using dynamic features of a series of blurry flame images[J]. IEEE Transactions on Industrial Informatics, 2016, 12(1):148-157.
|
[9] |
HAN M, LIU C. Endpoint prediction model for basic oxygen furnace steel-making based on membrane algorithm evolving extreme learning machine[J]. Applied Soft Computing, 2014, 19:430-437.
|
[10] |
陈华, 章兢, 张小刚,等. 一种基于Parzen窗估计的鲁棒ELM烧结温度检测方法[J]. 自动化学报, 2012, 38(5):841-849. CHEN H, ZHANG J, ZHANG X G, et al. A robust-ELM approach based on Parzen estimation for kiln sintering temperature detection[J]. Acta Automatica Sinica, 2012, 38(5):841-849.
|
[11] |
LIU Y, GA Z L, LI P, et al. Just-in-time kernel learning with adaptive parameter selection for soft sensor modeling of batch processes[J]. Industrial & Engineering Chemistry Research, 2012, 51(11):4313-4327.
|
[12] |
LIU Y, CHEN J H. Integrated soft sensor using just-in-time support vector regression and probabilistic analysis for quality prediction of multi-grade processes[J]. Journal of Process Control, 2013, 23(6):793-804.
|
[13] |
JIN H P, CHEN X G YANG, J W, et al. Adaptive soft sensor modeling framework based on just-in-time learning and kernel partial least squares regression for nonlinear multiphase batch processes[J]. Computers & Chemical Engineering, 2014, 71:77-93.
|
[14] |
XIONG W L, ZHANG W, XU B G, et al. JITL based MWGPR soft sensor for multi-mode process with dual-updating strategy[J]. Computers & Chemical Engineering, 2016, 90:260-267.
|
[15] |
JIN H P, CHEN X G, YANG J W, et al. Multi-model adaptive soft sensor modeling method using local learning and online support vector regression for nonlinear time-variant batch processes[J]. Chemical Engineering Science, 2015, 131:282-303.
|
[16] |
JIN H P, CHEN X G, YANG J W, et al. Online local learning based adaptive soft sensor and its application to an industrial fed-batch chlortetracycline fermentation process[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 143:58-78.
|
[17] |
FRANCISCO A A S, ARAUJO R. Mixture of partial least squares experts and application in prediction settings with multiple operating modes[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 130:192-202.
|
[18] |
JIN H P, CHEN X G, WANG L, et al. Adaptive soft sensor development based on online ensemble Gaussian process regression for nonlinear time-varying batch processes[J]. Industrial & Engineering Chemistry Research, 2015, 54(30):7320-7345.
|
[19] |
GATH I, GEVA A. B. Unsupervised optimal fuzzy clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7):773-780.
|
[20] |
ABONYI J, FEIL B, NEMETH S, et al. Fuzzy sets in knowledge discovery modified Gath-Geva clustering for fuzzy segmentation of multivariate time-series[J]. Fuzzy Sets and Systems, 2005, 149(1):39-56.
|
[21] |
LV Y, LIU J Z, YANG T T, et al. A novel least squares support vector machine ensemble model for NOx emission prediction of a coal-fired boiler[J]. Energy, 2013, 55:319-329.
|
[22] |
YUAN X F, GE Z Q, ZHANG H W, et al. Soft sensor for multiphase and multimode processes based on Gaussian mixture regression[J]. IFAC Proceedings Volumes, 2014, 47(3):1067-1072.
|
[23] |
GRBIC R, SLISKOVIC D, KADLEC P. Adaptive soft sensor for online prediction and process monitoring based on a mixture of Gaussian process models[J]. Computers & Chemical Engineering, 2013, 58:84-97.
|
[24] |
YU J. Multiway Gaussian mixture model based adaptive kernel partial least squares regression method for soft sensor estimation and reliable quality prediction of nonlinear multiphase batch processes[J]. Industrial & Engineering Chemistry Research, 2012, 51(40):13227-13237.
|
[25] |
YU J, CHEN K L, RASHID M M. A Bayesian model averaging based multi-kernel Gaussian process regression framework for nonlinear state estimation and quality prediction of multiphase batch processes with transient dynamics and uncertainty[J]. Chemical Engineering Science, 2013, 93:96-109.
|
[26] |
胡友涛, 胡昌华, 孔祥玉, 等. 基于WSVR和FCM聚类的实时寿命预测方法[J]. 自动化学报, 2012, (3):331-340. HU Y T, HU C H, KONG X Y, et al. Real-time lifetime prediction method based on wavelet support vector regression and fuzzy c-means clustering[J]. Acta Automatica Sinica, 2012, (3):331-340
|
[27] |
林金星, 沈炯, 李益国. 基于递阶G-K聚类的热工过程多模型建模方法[J]. 中国电机工程学报, 2006, (11):23-28. LIN J X, SHEN J, LI Y G. Multi-model modeling method based on hierarchical G-K clustering for thermal process[J]. Proceedings of the CSEE, 2006, (11):23-28.
|
[28] |
DING J L, CHAI T Y, CHENG W J, et al. Data-based multiple-model prediction of the production rate for hematite ore beneficiation process[J]. Control Engineering Practice, 2015, 45:219-229.
|
[29] |
MATIAS T, SOUZA F, ARAUJO R, et al. Learning of a single-hidden layer feedforward neural network using an optimized extreme learning machine[J]. Neurocomputing, 2014, 129:428-436.
|
[30] |
BIROL G, NDEY C, CINAR A. A modular simulation package for fed-batch fermentation:penicillin production[J]. Computers & Chemical Engineering, 2002, 26(11):1553-1565.
|
[31] |
YU J. A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses[J]. Computers & Chemical Engineering, 2012, 41:134-144.
|