[1] |
PIETER V, GEERT G, JEF V. Dynamic model-based fault diagnosis for (bio)chemical batch processes[J]. Computers and Chemical Engineering, 2012, 40(1): 12-21.
|
[2] |
ZHAO C H, GAO F R. A sparse dissimilarity analysis algorithm for incipient fault isolation with no priori fault information[J]. Control Engineering Practice, 2017, 65(6): 70-82.
|
[3] |
常鹏, 王普, 高学金. 基于统计量模式分析的T-KPLS间歇过程故障监控[J]. 化工学报, 2015, 66(1): 265-271. CHANG P, WANG P, GAO X J. Fault monitoring batch process based on statistics pattern analysis of T-KPLS[J]. CIESC Journal, 2015, 66(1): 265-271.
|
[4] |
常鹏, 王普, 高学金. 基于多向核熵成分分析的微生物发酵过程多阶段划分及故障监测)[J].高校化学工程学报, 2015, 29(3): 650-656. CHANG P, WANG P, GAO X J. Multi-stage separation and fault monitoring of microbial fermentation processes based on multi-way kernel entropy component analysis[J]. Chem. Eng. of Chinese Univ., 2015, 29(3): 650-656.
|
[5] |
JIANG Q, YAN X, LÜ Z, et al. Fault detection in nonlinear chemical processes based on kernel entropy component analysis and angular structure[J]. Korean Journal of Chemical Engineering, 2013, 30(6): 1181-1186.
|
[6] |
常鹏, 王普, 高学金. 基于多向核熵成分分析的微生物发酵间歇过程监测研究)[J]. 高校化学工程学报, 2015, 29(2): 395-399. CHANG P, WANG P, GAO X J. Batch process monitoring for microbial fermentation based on multi-way kernel entropy component analysis[J]. Chem. Eng. of Chinese Univ., 2015, 29(2): 395-399.
|
[7] |
ROBERT J. Kernel entropy component analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5): 847-860.
|
[8] |
ZHANG Y, QIN S J. Fault detection of nonlinear processes using multiway kernel independent component analysis[J]. Industrial & Engineering Chemistry Research, 2007, 46(23): 7780-7787.
|
[9] |
ZHAO C, GAO F, WANG F. Nonlinear batch process monitoring using phase based kernel-independent component analysis principal component analysis (KICA-PCA)[J]. Industrial & Engineering Chemistry Research, 2009, 48(20): 9163-9174.
|
[10] |
RASHID M M, YU J. Nonlinear and non-Gaussian dynamic batch process monitoring using a new multiway kernel independent component analysis and multidimensional mutual information based dissimilarity approach[J]. Industrial & Engineering Chemistry Research, 2012, 51(33): 10910-10920.
|
[11] |
FAN J, QIN S J, WANG Y. Online monitoring of nonlinear multivariate industrial processes using filtering KICA-PCA[J]. Control Engineering Practice, 2014, 22: 205-216.
|
[12] |
LEE J M, CHANG Y, LEE B. Fault detection of batch process using multiway kernel principal component analysis[J]. Computers and Chemical Engineering, 2004, 28(9): 1837-1847.
|
[13] |
CAI L, TIAN X, ZHANG N. A kernel time structure independent component analysis method for nonlinear process monitoring[J]. Chinese Journal of Chemical Engineering, 2014, 22(11): 1243-1253.
|
[14] |
CAI L, TIAN X, CHEN S. A process monitoring method based on noisy independent component analysis[J]. Neurocomputing, 2014, 127(3): 231-246.
|
[15] |
ZHANG Y W, AN J Y, ZHANG H L. Monitoring of time varying process using kernel independent component analysis[J]. Chemical Engineering Science, 2013, 88(4): 23-32.
|
[16] |
ZHANG H L, QI Y S, WANG L, et al. Fault detection and diagnosis of chemical process uning enhanced KECA[J]. Chemometric and Intelligent Laboratory Systems, 2017, 161(1): 61-69.
|
[17] |
NOMIKOS P, MACGREGOR J F. Monitoring batch processes using multiway principal component analysis[J]. AIChE Journal, 1994, 40(8): 1361-1375.
|
[18] |
NOMIKOS P, MACGREGOR J F. Multivariate SPC charts for monitoring batch process[J]. Technometrics, 1995, 37(1): 41-59.
|
[19] |
AGUDO D, FERRER A, FERRER J, et al. Multivariate SPC of a sequencing batch reactor for wastewater treatment[J]. Chemometrics and Intelligent Laboratory Systems, 2007, 85(1): 82-93.
|
[20] |
常鹏, 王普, 高学金, 等. 基于统计量模式分析的MKPLS间歇过程监控与质量预报[J]. 仪器仪表学报, 2014, 35(6): 1409-1416. CHANG P, WANG P, GAO X J, et al. Batch process monitoring and quality prediction based on statistics pattern analysis and MKPLS[J]. Chinese Journal of Scientific Instrument, 2014, 35(6): 1409-1416.
|
[21] |
常鹏, 王普, 高学金. 基于多向核熵偏最小二乘的间歇过程监测及质量预测[J]. 北京工业大学学报, 2014, 40(6): 851-856. CHANG P, WANG P, GAO X J. Batch process monitoring and quality prediction based on multi-way kernel entropy PLS[J]. Journal of Beijing University of Technology, 2014, 40(6): 851-856.
|
[22] |
常鹏, 王普, 高学金, 等. 基于核熵投影技术的多阶段间歇过程监测研究[J]. 仪器仪表学报, 2014, 35(7): 1654-1661. CHANG P, WANG P, GAO X J, et al. Research on batch process monitoring based on multi-stage kernel pattern entropy projection technology[J]. Chinese Journal of Scientific Instrument, 2014, 35(7): 1654-1661.
|
[23] |
BIROL G, UNDEY C, CINAR A. A modular simulation package for fed-batch fermentation: penicillin production[J]. Computers and Chemical Engineering, 2002, 26(11): 1553-1565.
|
[24] |
FU C, ZHANG P, JIANG J, et al. A Bayesian approach for sleep and wake classification based on dynamic time warping method[J]. Multimedia Tools & Applications, 2017, 76(17): 1-20.
|
[25] |
王建林, 刘伟旻, 邱科鹏, 等. 基于LWPT-DTW的间歇过程不等长时段数据同步化[J]. 化工学报, 2017, 68(7): 2866-2872. WANG J L, LIU W M, QIU K P, et al. LWPT-DTW trajectory synchronization of uneven-length phase data in batch processes[J]. CIESC Journal, 2017, 68(7): 2866-2872.
|
[26] |
TAYLOR J, ZHOU X, ROUPHAIL N M, et al. Method for investigating intradriver heterogeneity using vehicle trajectory data: a dynamic time warping approach[J]. Transportation Research Part B: Methodological, 2015, 73: 59-80.
|
[27] |
KASSIDAS A, MACGREGOR J F, TAYLOR P A. Synchronization of batch trajectories using dynamic time warping[J]. AIChE Journal, 1998, 44(4): 864-875.
|
[28] |
EAMONN K, CHOTIRAT A R. Exact indexing of dynamic time wraping[J]. Knowledge and Information Systems, 2005, 7(3): 358-386.
|
[29] |
ROHIT J K. Using dynamic time wraping distances as features for improved time series classification[J]. Data Mining and Knowledge Discovery, 2016, 30(2): 283-312.
|
[30] |
ZHOU N C, WANG J, WANG Q G. A novel estimation method of metering errors of electric energy based on membership cloud and dynamic time warping[J]. IEEE Transactions on Smart Grid, 2017, 8(3): 1318-1329.
|