CIESC Journal ›› 2020, Vol. 71 ›› Issue (7): 2921-2932.DOI: 10.11949/0438-1157.20191557
• Reviews and monographs • Previous Articles Next Articles
Yuanyuan CAI1(),Baitao GUO1,2,Weihong XING2(),Congjie GAO3
Received:
2019-12-20
Revised:
2020-04-07
Online:
2020-07-05
Published:
2020-07-05
Contact:
Weihong XING
通讯作者:
邢卫红
作者简介:
蔡媛媛(1988—),女,博士,中级工程师,基金资助:
CLC Number:
Yuanyuan CAI,Baitao GUO,Weihong XING,Congjie GAO. Progress research on development of membrane technology and materials for health industry[J]. CIESC Journal, 2020, 71(7): 2921-2932.
蔡媛媛,郭百涛,邢卫红,高从堦. 面向健康产业应用需求的膜技术与膜材料[J]. 化工学报, 2020, 71(7): 2921-2932.
Add to citation manager EndNote|Ris|BibTeX
Fig.2 Distribution diagram of number of SCI papers published in application in health field with different membrane technologies during nearly 10 years
膜技术类型 | 排名第1 | 排名第2 | 排名第3 | 排名第4 | 排名第5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
国家 | 数量/篇 | 国家 | 数量/篇 | 国家 | 数量/篇 | 国家 | 数量/篇 | 国家 | 数量/篇 | |
微滤 | 中国 | 557 | 美国 | 299 | 韩国 | 194 | 澳大利亚 | 119 | 日本 | 119 |
超滤 | 中国 | 1143 | 美国 | 477 | 印度 | 263 | 西班牙 | 231 | 韩国 | 226 |
纳滤 | 中国 | 671 | 美国 | 437 | 韩国 | 205 | 西班牙 | 166 | 印度 | 165 |
反渗透 | 美国 | 686 | 中国 | 523 | 韩国 | 348 | 澳大利亚 | 308 | 西班牙 | 244 |
膜生物反应器 | 中国 | 831 | 美国 | 257 | 澳大利亚 | 231 | 西班牙 | 192 | 韩国 | 188 |
膜接触器 | 美国 | 341 | 中国 | 323 | 澳大利亚 | 110 | 韩国 | 104 | 德国 | 100 |
气体分离 | 美国 | 98 | 中国 | 71 | 波兰 | 27 | 德国 | 21 | 日本 | 20 |
渗透汽化 | 中国 | 546 | 美国 | 154 | 印度 | 149 | 日本 | 92 | 伊朗 | 87 |
液膜 | 中国 | 69 | 伊朗 | 49 | 波兰 | 43 | 印度 | 38 | 意大利 | 37 |
工业用渗析 | 中国 | 204 | 美国 | 113 | 法国 | 75 | 俄罗斯 | 70 | 加拿大 | 65 |
人工脏器 | 美国 | 1226 | 日本 | 576 | 德国 | 555 | 意大利 | 493 | 法国 | 378 |
控制释放 | 中国 | 586 | 美国 | 513 | 印度 | 247 | 德国 | 142 | 日本 | 133 |
Table 1 Quantitative distribution of SCI papers published by different contries of which application in health field with different membrane technologies during nearly 10 years
膜技术类型 | 排名第1 | 排名第2 | 排名第3 | 排名第4 | 排名第5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
国家 | 数量/篇 | 国家 | 数量/篇 | 国家 | 数量/篇 | 国家 | 数量/篇 | 国家 | 数量/篇 | |
微滤 | 中国 | 557 | 美国 | 299 | 韩国 | 194 | 澳大利亚 | 119 | 日本 | 119 |
超滤 | 中国 | 1143 | 美国 | 477 | 印度 | 263 | 西班牙 | 231 | 韩国 | 226 |
纳滤 | 中国 | 671 | 美国 | 437 | 韩国 | 205 | 西班牙 | 166 | 印度 | 165 |
反渗透 | 美国 | 686 | 中国 | 523 | 韩国 | 348 | 澳大利亚 | 308 | 西班牙 | 244 |
膜生物反应器 | 中国 | 831 | 美国 | 257 | 澳大利亚 | 231 | 西班牙 | 192 | 韩国 | 188 |
膜接触器 | 美国 | 341 | 中国 | 323 | 澳大利亚 | 110 | 韩国 | 104 | 德国 | 100 |
气体分离 | 美国 | 98 | 中国 | 71 | 波兰 | 27 | 德国 | 21 | 日本 | 20 |
渗透汽化 | 中国 | 546 | 美国 | 154 | 印度 | 149 | 日本 | 92 | 伊朗 | 87 |
液膜 | 中国 | 69 | 伊朗 | 49 | 波兰 | 43 | 印度 | 38 | 意大利 | 37 |
工业用渗析 | 中国 | 204 | 美国 | 113 | 法国 | 75 | 俄罗斯 | 70 | 加拿大 | 65 |
人工脏器 | 美国 | 1226 | 日本 | 576 | 德国 | 555 | 意大利 | 493 | 法国 | 378 |
控制释放 | 中国 | 586 | 美国 | 513 | 印度 | 247 | 德国 | 142 | 日本 | 133 |
1 | 张车伟, 宋福兴, 王桥, 等. 大健康产业蓝皮书:中国大健康产业发展报告(2018)[M]. 北京: 社会科学文献出版社, 2018. |
Zhang C W, Song F X, Wang Q, et al. Book of Big Health Industry: Development Report on Big Health Industry of China(2018)[M]. Beijing: Social Sciences Academic Press, 2018. | |
2 | 国家药典委员会. 中华人民共和国药典(2005版)[M]. 北京: 化学工业出版社, 2005. |
China Pharmacopoeia Committee. Pharmacopoeia of the People s Republic of China (2005 Edition)[M]. Beijing: Chemical Industry Press, 2005. | |
3 | 国家药典委员会. 中华人民共和国药典(2015版)[M]. 北京: 中国医药科技出版社, 2015. |
China Pharmacopoeia Committee. Pharmacopoeia of the People s Republic of China (2015 Edition)[M]. Beijing: China Medical Science Press, 2015. | |
4 | 国家药典委员会. 中华人民共和国药典(2010版)[M]. 北京: 中国医药科技出版社, 2010. |
China Pharmacopoeia Committee. Pharmacopoeia of the People s Republic of China (2010 Edition)[M]. Beijing: China Medical Science Press, 2010. | |
5 | Verma V K, Subbiah S.Sericin-coated polymeric microfiltration membrane for removal of drug-based micropollutants[J]. Journal of Chemical Technology and Biotechnology, 2019, 94(11): 3625-3636. |
6 | 孙晓博, 章安康, 张宇峰, 等. CA/PSf共混超滤膜的制备及性能研究[J]. 膜科学与技术, 2018, 38(2): 9-16. |
Sun X B, Zhang A K, Zhang Y F, et al. Preparation and properties of CA/PSf blend ultrafiltration membrane[J]. Membrane Science and Technology, 2018, 38(2): 9-16. | |
7 | Wu X, Xie Z, Wang H, et al. Improved filtration performance and antifouling properties of polyethersulfone ultrafiltration membranes by blending with carboxylic acid functionalized polysulfone[J]. RSC Advances, 2018, 8(14): 7774-7784. |
8 | Wu C, Wang Z, Liu S, et al. Simultaneous permeability, selectivity and antibacterial property improvement of PVC ultrafiltration membranes via in-situ quaternization[J]. Journal of Membrane Science, 2018, 548: 50-58. |
9 |
Wang S, Li T, Chen C, et al. PVDF ultrafiltration membranes of controlled performance via blending PVDF-g-PEGMA copolymer synthesized under different reaction times[J]. Frontiers of Environmental Science and Engineering, 2018, 12(2). doi:10.1007/s11783-017-0980-0.
DOI URL |
10 | Xie M, Huan G, Xia W, et al. Preparation and performance optimization of PVDF anti-fouling membrane modified by chitin[J]. Journal of Polymer Engineering, 2018, 38(2): 179-186. |
11 | Zhong D, Wang Z, Lan Q, et al. Selective swelling of block copolymer ultrafiltration membranes for enhanced water permeability and fouling resistance[J]. Journal of Membrane Science, 2018, 558: 106-112. |
12 | Wang Z, Liu R, Lan Q, et al. Selective swelling blends of block copolymers for nanoporous membranes with enhanced permeability and robustness[J]. Journal of Polymer Science Part B-Polymer Physics, 2017, 55(21): 1617-1625. |
13 | Modi A, Bellare J. Efficient separation of biological macromolecular proteins by polyethersulfone hollow fiber ultrafiltration membranes modified with Fe3O4 nanoparticles-decorated carboxylated graphene oxide nanosheets[J]. International Journal of Biological Macromolecules, 2019, 135: 798-807. |
14 | Pang R, Zhang K. A facile and viable approach to fabricate polyamide membranes functionalized with graphene oxide nanosheets[J]. RSC Advances, 2017, 7(84): 53463-53471. |
15 | Shi M, Wang Z, Zhao S, et al. A novel pathway for high performance RO membrane: preparing active layer with decreased thickness and enhanced compactness by incorporating tannic acid into the support[J]. Journal of Membrane Science, 2018, 555: 157-168. |
16 | Pang R, Zhang K. Fabrication of hydrophobic fluorinated silica-polyamide thin film nanocomposite reverse osmosis membranes with dramatically improved salt rejection[J]. Journal of Colloid and Interface Science, 2018, 510: 127-132. |
17 | Zhao Y, Zhang Z, Dai L, et al. Preparation of high water flux and antifouling RO membranes using a novel diacyl chloride monomer with a phosphonate group[J]. Journal of Membrane Science, 2017, 536: 98-107. |
18 | Wei X, Bao X, Wu J, et al. Typical pharmaceutical molecule removal behavior from water by positively and negatively charged composite hollow fiber nanofiltration membranes[J]. RSC Advances, 2018, 8(19): 10396-10408. |
19 | Wang J J, Yang H C, Wu M B, et al. Nanofiltration membranes with cellulose nanocrystals as an interlayer for unprecedented performance[J]. Journal of Materials Chemistry A, 2018, 6(33): 16274-16274. |
20 | Wang Z, Wang Z, Lin S, et al. Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination[J]. Nature Communications, 2018, 9(1): 2004. |
21 | Meng N, Zhao W, Shamsaei E, et al. A low-pressure GO nanofiltration membrane crosslinked via ethylenediamine[J]. Journal of Membrane Science, 2018, 548: 363-371. |
22 | Guo X, Liu D, Han T, et al. Preparation of thin film nanocomposite membranes with surface modified MOF for high flux organic solvent nanofiltration[J]. AIChE Journal, 2017, 63(4): 1303-1312. |
23 | Zhu L, Yu H, Zhang H, et al. Mixed matrix membranes containing MIL-53(Al) for potential application in organic solvent nanofiltration[J]. RSC Advances, 2015, 5(89): 73068-73076. |
24 | Yang Y, Zhang Q, Li S, et al. Preparation and characterization of porous polyelectrolyte complex membranes for nanofiltration[J]. RSC Advances, 2015, 5(5): 3567-3573. |
25 | Lv J L, Zhang G Q, Zhang H M, et al. Graphene oxide-cellulose nanocrystal (GO-CNC) composite functionalized PVDF membrane with improved antifouling performance in MBR: behavior and mechanism[J]. Chemical Engineering Journal, 2018, 352: 765-773. |
26 | Li N, Zhang J, Tian Y, et al. Anti-fouling potential evaluation of PVDF membranes modified with ZnO against polysaccharide[J]. Chemical Engineering Journal, 2016, 304: 165-174. |
27 | Lee X J, Show P L, Katsuda T, et al. Surface grafting techniques on the improvement of membrane bioreactor: state-of-the-art advances[J]. Bioresource Technology, 2018, 269: 489-502. |
28 | Xie W Y, Li J, Sun T T, et al. Hydrophilic modification and anti-fouling properties of PVDF membrane via in situ nano-particle blending[J]. Environmental Science and Pollution Research, 2018, 25(25): 25227-25242. |
29 | Xue S, Li C, Li J, et al. A catechol-based biomimetic strategy combined with surface mineralization to enhance hydrophilicity and anti-fouling property of PTFE flat membrane[J]. Journal of Membrane Science, 2017, 524: 409-418. |
30 | Li C, Wang F, Zhu H, et al. Study on hydrophilic modification and separation performance of PTFE flat membrane by polyacrylic acid post-crosslinked with bisaminoorganosilicone[J]. Membrane Science and Technology, 2018, 38(3): 83-90. |
31 | Song H, Yu H, Zhu L, et al. Durable hydrophilic surface modification for PTFE hollow fiber membranes[J]. Reactive and Functional Polymers, 2017, 114: 110-117. |
32 | Jeong Y, Kim Y, Jin Y, et al. Comparison of filtration and treatment performance between polymeric and ceramic membranes in anaerobic membrane bioreactor treatment of domestic wastewater[J]. Separation and Purification Technology, 2018, 199: 182-188. |
33 | Nguyen P Y, Silva A F, Reis A C, et al. Bioaugmentation of membrane bioreactor with Achromobacter denitrificans strain PR1 for enhanced sulfamethoxazole removal in wastewater[J]. Science of the Total Environment, 2019, 648: 44-55. |
34 | Sun G R, Zhang C Y, Li W, et al. Effect of chemical dose on phosphorus removal and membrane fouling control in a UCT-MBR[J]. Frontiers of Environmental Science and Engineering, 2019, 13(1): 11. |
35 | Song D, Zhang W, Liu C, et al. Development of a novel anoxic/oxic fed-batch membrane bioreactor (AFMBR) based on gravity-driven and partial aeration modes: a pilot scale study[J]. Bioresource Technology, 2018, 270: 255-262. |
36 | Zhou C, Zhou J, Huang A. Seeding-free synthesis of zeolite FAU membrane for seawater desalination by pervaporation[J]. Microporous and Mesoporous Materials, 2016, 234: 377-383. |
37 | Pan S, Meng X, Wang Z, et al. An efficient synthesis of NaA zeolite membranes from direct crystallization of gel-dipped macroporous alumina tubes with seeds[J]. Journal of Materials Chemistry A, 2018, 6(22): 10484-10489. |
38 | Wang R, Ma N, Yan Y, et al. Ultrasonic-assisted fabrication of high flux T-type zeolite membranes on alumina hollow fibers[J]. Journal of Membrane Science, 2018, 548: 676-684. |
39 | Zhu Z, Hu D, Liu Y, et al. Three-component mixed matrix organic/inorganic hybrid membranes for pervaporation separation of ethanol-water mixture[J]. Journal of Applied Polymer Science, 2017, 134: 44753. |
40 | Zhou H, Zhang J, Wan Y, et al. Fabrication of high silicalite-1 content filled PDMS thin composite pervaporation membrane for the separation of ethanol from aqueous solutions[J]. Journal of Membrane Science, 2017, 524: 1-11. |
41 | Yi S, Wan Y. Volatile organic compounds (VOCs) recovery from aqueous solutions via pervaporation with vinyltriethoxysilane-grafted-silicalite-1/polydimethylsiloxane mixed matrix membrane[J]. Chemical Engineering Journal, 2017, 313: 1639-1646. |
42 | Zheng P, Zhang P, Sun Z, et al. Nanostructured polyelectrolyte-surfactant complex pervaporation membranes for ethanol recovery: the relationship between the membrane structure and separation performance[J]. Chinese Journal of Polymer Science, 2018, 36(1): 25-33. |
43 | Yu S, Jiang Z, Yang S, et al. Highly swelling resistant membranes for model gasoline desulfurization[J]. Journal of Membrane Science, 2016, 514: 440-449. |
44 | Yu S, Jiang Z, Li W, et al. Elevated performance of hybrid membranes by incorporating metal organic framework CuBTC for pervaporative desulfurization of gasoline[J]. Chemical Engineering and Processing, 2018, 123: 12-19. |
45 | Liu G, Zhou T, Liu W, et al. Enhanced desulfurization performance of PDMS membranes by incorporating silver decorated dopamine nanoparticles[J]. Journal of Materials Chemistry A, 2014, 2(32): 12907-12917. |
46 | Xu H, Jin W, Wang F, et al. Preparation and properties of PTFE hollow fiber membranes for the removal of ultrafine particles in PM2.5 with repetitive usage capability[J]. RSC Advances, 2018, 8(67): 38245-38258. |
47 | Jian H, Bin Y, Xu G, et al. Effect of PTFE latex coating and PTFE membrane covering on properties of PPS filter materials[J]. Rare Metal Materials and Engineering, 2012, 41: 292-295. |
48 | Xu Q, Yang Y, Wang X, et al. Atomic layer deposition of alumina on porous polytetrafluoroethylene membranes for enhanced hydrophilicity and separation performances[J]. Journal of Membrane Science, 2012, 415: 435-443. |
49 | Luo Y, Li C, Wang J, et al. One-step catechol-based biomimetic strategy to fabricate organic-inorganic hybrid coatings on PTFE flat membrane for the improvement of hydrophilicity and fouling resistance[J]. Desalination and Water Treatment, 2018, 120: 31-40. |
50 | Wei W, Sun M, Zhang L, et al. Underwater oleophobic PTFE membrane for efficient and reusable emulsion separation and the influence of surface wettability and pore size[J]. Separation and Purification Technology, 2017, 189: 32-39. |
51 | Feng S, Li D, Low Z, et al. ALD-seeded hydrothermally-grown Ag/ZnO nanorod PTFE membrane as efficient indoor air filter[J]. Journal of Membrane Science, 2017, 531: 86-93. |
52 | Feng S, Zhong Z, Zhang F, et al. Amphiphobic polytetrafluoroethylene membranes for efficient organic aerosol removal[J]. ACS Applied Materials & Interfaces, 2016, 8(13): 8773-8781. |
53 | Zhong Z, Xu Z, Sheng T, et al. Unusual air filters with ultrahigh efficiency and antibacterial functionality enabled by ZnO nanorods[J]. ACS Applied Materials & Interfaces, 2015, 7(38): 21538-21544. |
54 | Vallejos F, Coudert F, Kaneko K. Air separation with graphene mediated by nanowindow-rim concerted motion[J]. Nature Communications, 2018, 9(1): 1812. |
55 | Ivanov M, Storozhuk I, Dibrov G, et al. Fabrication of hollow fiber membrane from polyarylate-polyarylateblock copolymer for air separation[J]. Petroleum Chemistry, 2018, 58(4): 289-295. |
56 | Ye P, Sjoberg E, Hedlund J. Air separation at cryogenic temperature using MFI membranes[J]. Microporous and Mesoporous Materials, 2014, 192: 14-17. |
57 | Chong K, Lai S, Lau W, et al. Fabrication and characterization of polysulfonemembranes coated with polydimethysiloxane for oxygen enrichment[J]. Aerosol and Air Quality Research, 2017, 17(11): 2735-2742. |
58 | Chen K, Zhao H, Tan X. Preparation of high-flux PDMS/PSf composite membrane for oxygen enrichment[J]. Membrane Science and Technology, 2016, 36(3): 86-92. |
59 | An K, Fan H, Dong Y, et al. Preparation of environment-friendly oxygen-rich silicone rubber membrane[J]. Membrane Science and Technology, 2013, 33(3): 54-58. |
60 | 赵长生, 赵伟锋, 张翔, 等. 新型血液净化材料及佩戴式人工肾的研究构想和预期成果展望[J]. 工程科学与技术, 2018, 50(1): 1-8. |
Zhao C S, Zhao W F, Zhang X, et al. Research framework and anticipated results of novel blood purification materials and wearable artificial kidney[J]. Advanced Engineering Sciences, 2018, 50(1): 1-8. | |
61 | 郭锐, 贾凌云, 冯红芹, 等. 医用血液净化材料的发展现状及研究进展[J]. 中国血液净化, 2004, 3(1): 43-47. |
Guo R, Jia L Y, Feng H Q, et al. Development and progress of medical blood purification materials[J]. Chinese Journal of Blood Purification, 2004, 3(1): 43-47. | |
62 | Zailani M Z, Ismail A F, Kadir S, et al. Hemocompatibility evaluation of poly(1,8-octanediol citrate) blend polyethersulfone membranes[J]. Journal of Biomedical Materials Research Part A, 2017, 105(5): 1510-1520. |
63 | Irfan M, Idris A. Overview of PES biocompatible/hemodialysis membranes: PES–blood interactions and modification techniques[J]. Materials Science and Engineering: C, 2015, 56: 574-592. |
64 | Wei X, Li G, Nie J, et al. Preparation and improvement anti-fouling property and biocompatibility of polyethersulfone membrane by blending comb-like amphiphilic copolymer[J]. Journal of Porous Materials, 2014, 21(5): 589-599. |
65 | Kaleekkal N J, Thanigaivelan A, Durga M, et al. Graphene oxide nanocomposite incorporated poly(ether imide) mixed matrix membranes for in vitro evaluation of its efficacy in blood purification applications[J]. Industrial & Engineering Chemistry Research, 2015, 54(32): 7899-7913. |
66 | Prihandana G S, Ito H, Nishinaka Y, et al. Polyethersulfonemembrane coated with nanoporousparylene for ultrafiltration[J]. Journal of Microelectromechanical Systems, 2012, 21(6): 1288-1290. |
67 | You I, Kang S M, Byun Y, et al. Enhancement of blood compatibility of poly(urethane) substrates by mussel-inspired adhesive heparin coating[J]. Bioconjugate Chemistry, 2011, 22(7): 1264-1269. |
68 | Ma L, Qin H, Cheng C, et al. Mussel-inspired self-coating at macro-interface with improved biocompatibility and bioactivity via dopamine grafted heparin-like polymers and heparin[J]. Journal of Materials Chemistry B, 2014, 2(4): 363-375. |
69 | Zhao Y F, Zhang P B, Sun J, et al. Versatile antifouling polyethersulfone filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive[J]. Journal of Colloid and Interface Science, 2015, 448: 380-388. |
70 | Wang C, Wang Q, Li S S, et al. One-pot synthesis of highly hemocompatible polyurethane/polyethersulfone composite membranes[J]. Polymer Bulletin, 2017, 74(9): 3797-3818. |
71 | Li S S, Xie Y, Xiang T, et al. Heparin-mimicking polyethersulfone membranes-hemocompatibility, cytocompatibility, antifouling and antibacterial properties[J]. Journal of Membrane Science, 2016, 498: 135-146. |
72 | Wang J J, Wu M B, Xiang T, et al. Antifouling and blood-compatible poly(ether sulfone) membranes modified by zwitterionic copolymers viain situ crosslinked copolymerization[J]. Journal of Applied Polymer Science, 2015, 132(10): 41585. |
73 | Ran F, Song H M, Ma L, et al. Fabrication and cytocompatibility evaluation for blood-compatible polyethersulfone membrane modified by a synthesized poly (vinyl pyrrolidone)-block-poly (acrylate-graft-poly(methyl methacrylate))-block-poly-(vinyl pyrrolidone)[J]. Polymers for Advanced Technologies, 2016, 27(5): 591-596. |
74 | Yin Z, Cheng C, Qin H, et al. Hemocompatible polyethersulfone/polyurethane composite membrane for high-performance antifouling and antithrombotic dialyzer[J]. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2015, 103(1): 97-105. |
75 | Wang X H, Yan Y N, Lin F, et al. Preparation and characterization of a collagen/chitosan/heparin matrix for an implantable bioartificial liver[J]. Journal of Biomaterials Science-Polymer Edition, 2005, 16(9): 1063-1080. |
76 | Wang W. Hemocompatibility and oxygenation performance of polysulfone membranes grafted with polyethylene glycol and heparin by plasma-induced surface modification[J]. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2017, 105(7): 1737-1746. |
77 | Yang Y F, Wan L S, Xu Z K. Surface engineering of microporous polypropylene membrane for antifouling: a mini-review[J]. Journal of Adhesion Science and Technology, 2011, 25(1/2/3): 245-260. |
[1] | Yanpeng WU, Xiaoyu LI, Qiaoyang ZHONG. Experimental analysis on filtration performance of electrospun nanofibers with amphiphobic membrane of oily fine particles [J]. CIESC Journal, 2023, 74(S1): 259-264. |
[2] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[3] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[4] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[5] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[6] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[7] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[8] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[9] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[10] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[11] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
[12] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[13] | Xingchi ZHU, Zhiyuan GUO, Zhiyong JI, Jing WANG, Panpan ZHANG, Jie LIU, Yingying ZHAO, Junsheng YUAN. Simulation and optimization of selective electrodialysis magnesium and lithium separation process [J]. CIESC Journal, 2023, 74(6): 2477-2485. |
[14] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[15] | Lei WANG, Lei WANG, Yunlong BAI, Liuliu HE. Preparation of SA lithium ion sieve membrane and its adsorptive properties [J]. CIESC Journal, 2023, 74(5): 2046-2056. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||