CIESC Journal ›› 2020, Vol. 71 ›› Issue (S2): 187-194.DOI: 10.11949/0438-1157.20200224
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Yifan ZHOU(),Congxue YAO,Jingwen WANG,Wenwen GUO,Lei SONG,Xiaowei MU,Yuan HU(
)
Received:
2020-03-03
Revised:
2020-04-19
Online:
2020-11-06
Published:
2020-11-06
Contact:
Yuan HU
通讯作者:
胡源
作者简介:
周一帆(1994—),男,硕士研究生,基金资助:
CLC Number:
Yifan ZHOU, Congxue YAO, Jingwen WANG, Wenwen GUO, Lei SONG, Xiaowei MU, Yuan HU. Study on thermal decomposition characteristics and kinetics of soybean[J]. CIESC Journal, 2020, 71(S2): 187-194.
周一帆, 姚丛雪, 王靖文, 郭文文, 宋磊, 牧小卫, 胡源. 大豆的热分解特性及其动力学探究[J]. 化工学报, 2020, 71(S2): 187-194.
元素 | 相对含量/ %(atom) |
---|---|
碳(C) | 49.41 |
氢(H) | 7.78 |
氧(O) | 37.35 |
氮(N) | 5.63 |
硫(S) | 0.42 |
Table 1 Element analysis of soybean
元素 | 相对含量/ %(atom) |
---|---|
碳(C) | 49.41 |
氢(H) | 7.78 |
氧(O) | 37.35 |
氮(N) | 5.63 |
硫(S) | 0.42 |
升温速率/ (℃/min) | 气氛 | 第一阶段 | 第二阶段 | 第三阶段 | 第四阶段 | 水除外的 总失重率/% | ||||
---|---|---|---|---|---|---|---|---|---|---|
热解温度/℃ | 失重率/% | 热解温度/℃ | 失重率/% | 热解温度/℃ | 失重率/% | 热解温度/℃ | 失重率/% | |||
5 | 氮气 | RT~173 | 5 | 173~248 | 13 | 248~321 | 23 | 321~497 | 37 | 76 |
空气 | RT~173 | 5 | 173~248 | 13 | 248~347 | 36 | 347~526 | 36 | 89 | |
10 | 氮气 | RT~183 | 2 | 183~262 | 13 | 262~334 | 27 | 334~516 | 38 | 79 |
空气 | RT~183 | 2 | 183~262 | 13 | 262~358 | 39 | 358~553 | 39 | 92 | |
20 | 氮气 | RT~192 | 6 | 192~267 | 13 | 267~342 | 26 | 342~548 | 35 | 78 |
空气 | RT~192 | 6 | 192~267 | 13 | 267~371 | 37 | 371~568 | 37 | 92 | |
40 | 氮气 | RT~209 | 6 | 209~282 | 13 | 282~358 | 28 | 358~560 | 34 | 79 |
空气 | RT~209 | 6 | 209~282 | 13 | 282~400 | 42 | 400~650 | 33 | 93 |
Table 2 Mass loss stages and corresponding mass loss rate of soybean
升温速率/ (℃/min) | 气氛 | 第一阶段 | 第二阶段 | 第三阶段 | 第四阶段 | 水除外的 总失重率/% | ||||
---|---|---|---|---|---|---|---|---|---|---|
热解温度/℃ | 失重率/% | 热解温度/℃ | 失重率/% | 热解温度/℃ | 失重率/% | 热解温度/℃ | 失重率/% | |||
5 | 氮气 | RT~173 | 5 | 173~248 | 13 | 248~321 | 23 | 321~497 | 37 | 76 |
空气 | RT~173 | 5 | 173~248 | 13 | 248~347 | 36 | 347~526 | 36 | 89 | |
10 | 氮气 | RT~183 | 2 | 183~262 | 13 | 262~334 | 27 | 334~516 | 38 | 79 |
空气 | RT~183 | 2 | 183~262 | 13 | 262~358 | 39 | 358~553 | 39 | 92 | |
20 | 氮气 | RT~192 | 6 | 192~267 | 13 | 267~342 | 26 | 342~548 | 35 | 78 |
空气 | RT~192 | 6 | 192~267 | 13 | 267~371 | 37 | 371~568 | 37 | 92 | |
40 | 氮气 | RT~209 | 6 | 209~282 | 13 | 282~358 | 28 | 358~560 | 34 | 79 |
空气 | RT~209 | 6 | 209~282 | 13 | 282~400 | 42 | 400~650 | 33 | 93 |
参数 | 氮气气氛 | 空气气氛 | ||||
---|---|---|---|---|---|---|
失重峰1(235℃) | 失重峰2(325℃) | 失重峰3(384℃) | 失重峰1(235℃) | 失重峰2(326℃) | 失重峰3(486℃) | |
R | -0.996 | -0.998 | -0.996 | -0.997 | -0.925 | -0.795 |
E /(kJ/mol) | 114.761 | 162.501 | 128.918 | 131.869 | 71.973 | 48.336 |
Table 3 Decomposition activation energy of each decomposition peak of soybean in nitrogen and air
参数 | 氮气气氛 | 空气气氛 | ||||
---|---|---|---|---|---|---|
失重峰1(235℃) | 失重峰2(325℃) | 失重峰3(384℃) | 失重峰1(235℃) | 失重峰2(326℃) | 失重峰3(486℃) | |
R | -0.996 | -0.998 | -0.996 | -0.997 | -0.925 | -0.795 |
E /(kJ/mol) | 114.761 | 162.501 | 128.918 | 131.869 | 71.973 | 48.336 |
氮气气氛 | 空气气氛 | ||||
---|---|---|---|---|---|
α | r | E/(kJ/mol) | α | r | E/(kJ/mol) |
0.1 | -0.83 | 94.1 | 0.1 | -1.00 | 116.5 |
0.2 | -0.83 | 114.9 | 0.2 | -0.97 | 114.9 |
0.3 | -0.94 | 162.5 | 0.3 | -0.94 | 116.5 |
0.4 | -0.97 | 199.3 | 0.4 | -0.93 | 123.1 |
0.5 | -0.98 | 259.0 | 0.5 | -0.94 | 144.8 |
0.6 | -0.99 | 255.8 | 0.6 | -0.96 | 257.7 |
0.7 | -1.00 | 198.3 | 0.7 | -0.86 | 401.5 |
0.8 | -1.00 | 222.5 | 0.8 | -0.87 | 133.8 |
0.9 | -0.94 | 301.5 | 0.9 | -0.84 | 80.2 |
Table 4 Activation energy of each conversion corresponding to the stage of soybean pyrolysis in different atmosphere (F-W-O method)
氮气气氛 | 空气气氛 | ||||
---|---|---|---|---|---|
α | r | E/(kJ/mol) | α | r | E/(kJ/mol) |
0.1 | -0.83 | 94.1 | 0.1 | -1.00 | 116.5 |
0.2 | -0.83 | 114.9 | 0.2 | -0.97 | 114.9 |
0.3 | -0.94 | 162.5 | 0.3 | -0.94 | 116.5 |
0.4 | -0.97 | 199.3 | 0.4 | -0.93 | 123.1 |
0.5 | -0.98 | 259.0 | 0.5 | -0.94 | 144.8 |
0.6 | -0.99 | 255.8 | 0.6 | -0.96 | 257.7 |
0.7 | -1.00 | 198.3 | 0.7 | -0.86 | 401.5 |
0.8 | -1.00 | 222.5 | 0.8 | -0.87 | 133.8 |
0.9 | -0.94 | 301.5 | 0.9 | -0.84 | 80.2 |
氮气气氛 | 空气气氛 | ||||
---|---|---|---|---|---|
α | r | E/(kJ/mol) | α | r | E/(kJ/mol) |
0.1 | -0.9 | 109.3 | 0.1 | -0.99 | 125.9 |
0.2 | -0.88 | 128.6 | 0.2 | -0.93 | 112.9 |
0.3 | -0.98 | 179.0 | 0.3 | -0.92 | 119.5 |
0.4 | -0.99 | 228.5 | 0.4 | -0.92 | 131.5 |
0.5 | -0.99 | 295.5 | 0.5 | -0.96 | 185.6 |
0.6 | -0.99 | 222.0 | 0.6 | -0.99 | 390.7 |
0.7 | -1.00 | 173.3 | 0.7 | -0.82 | 396.2 |
0.8 | -0.98 | 312.5 | 0.8 | -0.17 | 22.2 |
0.9 | -0.93 | 286.5 | 0.9 | -0.65 | 36.4 |
Table 5 Activation energy of each conversion corresponding to the stage of soybean pyrolysis in different atmosphere (Friedman method)
氮气气氛 | 空气气氛 | ||||
---|---|---|---|---|---|
α | r | E/(kJ/mol) | α | r | E/(kJ/mol) |
0.1 | -0.9 | 109.3 | 0.1 | -0.99 | 125.9 |
0.2 | -0.88 | 128.6 | 0.2 | -0.93 | 112.9 |
0.3 | -0.98 | 179.0 | 0.3 | -0.92 | 119.5 |
0.4 | -0.99 | 228.5 | 0.4 | -0.92 | 131.5 |
0.5 | -0.99 | 295.5 | 0.5 | -0.96 | 185.6 |
0.6 | -0.99 | 222.0 | 0.6 | -0.99 | 390.7 |
0.7 | -1.00 | 173.3 | 0.7 | -0.82 | 396.2 |
0.8 | -0.98 | 312.5 | 0.8 | -0.17 | 22.2 |
0.9 | -0.93 | 286.5 | 0.9 | -0.65 | 36.4 |
氮气气氛 | 空气气氛 | ||||
---|---|---|---|---|---|
α | r | E/(kJ/mol) | α | r | E/(kJ/mol) |
0.1 | -0.77 | 61.9 | 0.1 | -1.00 | 114.2 |
0.2 | -0.82 | 111.1 | 0.2 | -0.97 | 111.8 |
0.3 | -0.94 | 161.2 | 0.3 | -0.93 | 112.9 |
0.4 | -0.97 | 199.4 | 0.4 | -0.92 | 119.4 |
0.5 | -0.98 | 258.5 | 0.5 | -0.93 | 141.9 |
0.6 | -0.99 | 257.7 | 0.6 | -0.96 | 260.2 |
0.7 | -1.00 | 201.1 | 0.7 | -1.00 | 201.1 |
0.8 | -1.00 | 224.1 | 0.8 | -1.00 | 224.1 |
0.9 | -0.93 | 303.3 | 0.9 | -0.93 | 79.2 |
Table 6 Activation energy of each conversion corresponding to the stage of soybean pyrolysis in different atmosphere (DAEM method)
氮气气氛 | 空气气氛 | ||||
---|---|---|---|---|---|
α | r | E/(kJ/mol) | α | r | E/(kJ/mol) |
0.1 | -0.77 | 61.9 | 0.1 | -1.00 | 114.2 |
0.2 | -0.82 | 111.1 | 0.2 | -0.97 | 111.8 |
0.3 | -0.94 | 161.2 | 0.3 | -0.93 | 112.9 |
0.4 | -0.97 | 199.4 | 0.4 | -0.92 | 119.4 |
0.5 | -0.98 | 258.5 | 0.5 | -0.93 | 141.9 |
0.6 | -0.99 | 257.7 | 0.6 | -0.96 | 260.2 |
0.7 | -1.00 | 201.1 | 0.7 | -1.00 | 201.1 |
0.8 | -1.00 | 224.1 | 0.8 | -1.00 | 224.1 |
0.9 | -0.93 | 303.3 | 0.9 | -0.93 | 79.2 |
气氛 | 大豆各转化率对应阶段的平均表观活化能/(kJ/mol) | ||||||||
---|---|---|---|---|---|---|---|---|---|
α=0.1 | α=0.2 | α=0.3 | α=0.4 | α=0.5 | α=0.6 | α=0.7 | α=0.8 | α=0.9 | |
氮气 | 88.4 | 118.2 | 167.6 | 209.1 | 271.0 | 245.2 | 190.9 | 253.0 | 297.1 |
空气 | 118.9 | 113.2 | 116.3 | 124.7 | 157.4 | 302.9 | 332.9 | 126.7 | 65.2 |
Table 7 Average value of apparent activation energy of soybean pyrolysis obtained by different calculation methods
气氛 | 大豆各转化率对应阶段的平均表观活化能/(kJ/mol) | ||||||||
---|---|---|---|---|---|---|---|---|---|
α=0.1 | α=0.2 | α=0.3 | α=0.4 | α=0.5 | α=0.6 | α=0.7 | α=0.8 | α=0.9 | |
氮气 | 88.4 | 118.2 | 167.6 | 209.1 | 271.0 | 245.2 | 190.9 | 253.0 | 297.1 |
空气 | 118.9 | 113.2 | 116.3 | 124.7 | 157.4 | 302.9 | 332.9 | 126.7 | 65.2 |
1 | 丁超. 储粮机械通风技术拓展研究[D]. 南京: 南京财经大学, 2010. |
Ding C. Research on mechanical ventilation technology development of grain storage [D]. Nanjing: Nanjing University of Finance and Economics, 2010. | |
2 | 徐昌荣. 防止粮食自燃[J]. 中国西部科技, 2005, (17): 56. |
Xu C R. Prevention of grain spontaneous combustion [J]. Science and Technology of Western China, 2005, (17): 56 | |
3 | 张桂芝. 粮食仓储降本增效途径探析[J]. 化工管理, 2019, (10): 73-74. |
Zhang G Z. Approach to reducing cost and increasing efficiency of grain storage [J]. Chemical Management, 2019, (10): 73-74. | |
4 | 彭文才. 农作物秸秆水热液化过程及机理的研究[D]. 上海: 华东理工大学, 2011. |
Peng W C. Study on the hydrothermal liquefaction process and mechanism of crop straw [D]. Shanghai: East China University of Science and Technology, 2011. | |
5 | 张冀翔. 生物油在亚临界、超临界流体中的制备与提质改性研究[D]. 杭州: 浙江大学, 2013. |
Zhang J X. Study on the preparation and quality improvement of bio oil in subcritical and supercritical fluids [D]. Hangzhou: Zhejiang University, 2013. | |
6 | Dong H, Xiao K, Xian Y. Isotope ratio mass spectrometry coupled to element analyzer and liquid chromatography to identify commercial honeys of various botanical types[J]. Food Analytical Methods, 2017, 10(8): 2755-2763. |
7 | Hu M, Chen Z, Wang S, et al. Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser-Suzuki deconvolution, and iso-conversional method[J]. Energy Conversion and Management, 2016, 118: 1-11. |
8 | Fang S, Yu Z, Ma X, et al. Analysis of catalytic pyrolysis of municipal solid waste and paper sludge using TG-FTIR, Py-GC/MS and DAEM (distributed activation energy model)[J]. Energy, 2018, 143: 517-532. |
9 | Huang X, Cao J, Zhao X, et al. Pyrolysis kinetics of soybean straw using thermogravimetric analysis[J]. Fuel, 2016, 169: 93-98. |
10 | Aslan D I, Parthasarathy P, Goldfarb J L, et al. Pyrolysis reaction models of waste tires: application of master-plots method for energy conversion via devolatilization[J]. Waste Management, 2017, 68: 405-411. |
11 | Fu C D, He Y, Pfaendtner J. Diagnosing the impact of external electric fields chemical kinetics: application to toluene oxidation and pyrolysis[J]. The Journal of Physical Chemistry A, 2019, 123(14): 3080-3089. |
12 | Rony A H, Kong L, Lu W, et al. Kinetics, thermodynamics, and physical characterization of corn stover (Zea mays) for solar biomass pyrolysis potential analysis[J]. Bioresource Technology, 2019, 284: 466-473. |
13 | Bach Q, Chen W. Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): a state-of-the-art review[J]. Bioresource Technology, 2017, 246: 88-100. |
14 | Özsin G, Pütün A E. Kinetics and evolved gas analysis for pyrolysis of food processing wastes using TGA/MS/FT-IR[J]. Waste Management, 2017, 64: 315-326. |
15 | Liu H, Ahmad M S, Alhumade H, et al. A hybrid kinetic and optimization approach for biomass pyrolysis: the hybrid scheme of the isoconversional methods, DAEM, and a parallel-reaction mechanism[J]. Energy Conversion and Management, 2020, 208: 112531. |
16 | Li D, Chen L, Zhao J, et al. Evaluation of the pyrolytic and kinetic characteristics of enteromorpha prolifera as a source of renewable bio-fuel from the Yellow Sea of China[J]. Chemical Engineering Research & Design, 2010, 88(5/6A): 647-652. |
17 | Huang X, Cao J, Zhao X, et al. Pyrolysis kinetics of soybean straw using thermogravimetric analysis[J]. Fuel, 2016, 169: 93-98. |
18 | Suárez S, Rosas J G, Sánchez M E, et al. Parametrization of a modified friedman kinetic method to assess vine wood pyrolysis using thermogravimetric analysis[J]. Energies, 2019, 12(13): 2599. |
19 | Lim A C R, Chin B L F, Jawad Z A, et al. Kinetic analysis of rice husk pyrolysis using Kissinger-Akahira-Sunose (KAS) method[J]. Procedia Engineering, 2016, 148: 1247-1251. |
20 | Ding Y, Zhang Y, Zhang J, et al. Kinetic parameters estimation of pinus sylvestris pyrolysis by Kissinger-Kai method coupled with particle swarm optimization and global sensitivity analysis[J]. Bioresource Technology, 2019, 293: 122079. |
21 | 于寒松, 黄明伟, 赵永程, 等. 大豆成分与豆浆和豆腐特性的研究[J]. 食品工业, 2015, 36(4): 7-10. |
Yu H S, Huang M W, Zhao Y C, et al. Study on soybean composition and characteristics of soybean milk and tofu [J]. Food Industry, 2015, 36 (4): 7-10. | |
22 | 毛红艳, 徐鑫, 于明. 新疆地区玉米品种营养品质主成分分析与评价[J]. 新疆农业科学, 2018, 55(10): 1909-1915. |
Mao H Y, Xu X, Yu M. Principal component analysis and evaluation of nutritional quality of Maize Varieties in Xinjiang [J]. Xinjiang Agricultural Science, 2018, 55 (10): 1909-1915. | |
23 | 王永兵. 稻米不同剖层成分含量及镁调控对水稻食味品质的影响[D]. 沈阳: 沈阳农业大学, 2018. |
Wang Y B. Effects of different components and magnesium regulation on rice taste quality [D]. Shenyang: Shenyang Agricultural University, 2018. | |
24 | Acioli-Moura R, Sun X S. Thermal degradation and physical aging of poly(lactic acid) and its blends with starch[J]. Polymer Engineering and Science. 2008, 48(4): 829-836. |
25 | Yang S I, Wu M S. The droplet combustion and thermal characteristics of pinewood bio-oil from slow pyrolysis[J]. Energy, 2017, 141: 2377-2386. |
26 | Soares R, Scremin F F, Soldi V. Thermal stability of biodegradable films based on soy protein and corn starch[J]. Macromolecular Symposia, 2005, 229: 258-265. |
27 | Ding Y, Ezekoye O A, Lu S, et al. Comparative pyrolysis behaviors and reaction mechanisms of hardwood and softwood[J]. Energy Conversion and Management. 2017, 132: 102-109. |
28 | 胡荣祖. 热分析动力学[M]. 2版. 北京: 科学出版社, 2008: 14, 443. |
Hu R Z. Thermal Analysis Dynamics [M]. 2nd ed. Beijing: Science Press, 2008: 14, 443. | |
29 | Aboulkas A, Harfi R E, Bouadili R E. Thermal degradation behaviors of polyethylene and polypropylene(Ⅰ): Pyrolysis kinetics and mechanisms[J]. Energy Conversion & Management. 2010, 51(7): 1363-1369. |
30 | Radojević M, Janković B, Jovanović V, et al. Comparative pyrolysis kinetics of various biomasses based on model-free and DAEM approaches improved with numerical optimization procedure[J]. PLoS ONE, 2018, 13(10): e0206657. |
31 | Shen D K, Gu S, Jin B, et al. Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods[J]. Bioresource Technology, 2011, 102(2): 2047-2052. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump [J]. CIESC Journal, 2023, 74(S1): 329-337. |
[3] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[4] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[5] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[6] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[7] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[8] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[9] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[10] | Maolin DONG, Lidong CHEN, Liulian HUANG, Weibing WU, Hongqi DAI, Huiyang BIAN. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications [J]. CIESC Journal, 2023, 74(6): 2281-2295. |
[11] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[12] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[13] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[14] | Haiqin LIU, Bowen LI, Zhe LING, Liang LIU, Juan YU, Yimin FAN, Qiang YONG. Facile preparation and properties of chemically modified galactomannan films via mild hydroxy-alkyne click reaction [J]. CIESC Journal, 2023, 74(3): 1370-1378. |
[15] | Lingxin ZU, Rongting HU, Xin LI, Yudao CHEN, Guanglin CHEN. Carbon release products and denitrification bioavailability from chemical components of woody biomass [J]. CIESC Journal, 2023, 74(3): 1332-1342. |
Viewed | ||||||||||||||||||||||
Full text 790
|
|
|||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||