CIESC Journal ›› 2020, Vol. 71 ›› Issue (9): 4303-4313.DOI: 10.11949/0438-1157.20200386
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Zhongyi HE1(),Guangyue JIA1,2,Mengmeng ZHANG1,2,Jincan YAN2,3(),Liping XIONG1,Hongbing JI2,4,5()
Received:
2020-04-13
Revised:
2020-06-24
Online:
2020-09-05
Published:
2020-09-05
Contact:
Jincan YAN,Hongbing JI
何忠义1(),贾广跃1,2,张萌萌1,2,晏金灿2,3(),熊丽萍1,纪红兵2,4,5()
通讯作者:
晏金灿,纪红兵
作者简介:
何忠义(1971—),男,博士,教授,基金资助:
CLC Number:
Zhongyi HE, Guangyue JIA, Mengmeng ZHANG, Jincan YAN, Liping XIONG, Hongbing JI. Tribological performance of hexagonal boron nitride supported ionic liquid lubricant additives[J]. CIESC Journal, 2020, 71(9): 4303-4313.
何忠义, 贾广跃, 张萌萌, 晏金灿, 熊丽萍, 纪红兵. 纳米六方氮化硼负载离子液体润滑添加剂的摩擦学特性[J]. 化工学报, 2020, 71(9): 4303-4313.
Add to citation manager EndNote|Ris|BibTeX
Fig.7 Friction coefficient and wear spot diameter of PEG400 and 0.5%(mass)h-BN, 0.5%(mass)OL-IL, 0.5%(mass) OL-IL/h-BN PEG400 dispersion under different loads
Fig.8 Friction coefficient curves of PEG400 and 0.5%(mass) h-BN hybrid, 0.5%(mass) OL-IL hybrid,0.5%(mass) OL-IL/h-BN PEG400 dispersion hybrid lubricated under different loads
Fig.10 XPS spectrum of C 1s(a),O 1s(b), Fe 2p(c), B 1s(d), N 1s(e)on the surface of the wear scar lubricated with 0.5%(mass) OL-IL/h-BN PEG400 dispersion
1 | Zhou J F, Wu Z S, Zhang Z J, et al. Study on an antiwear and extreme pressure additive of surface coated LaF3 nanoparticles in liquid paraffin[J]. Wear, 2001, 249(5/6): 333-337. |
2 | Li Y G, Wang H L, Xie L M, et al. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2011, 133(19): 7296-7299. |
3 | Hwang H, Kim H, Cho J. MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials[J]. Nano Letters, 2011, 11(11): 4826-4830. |
4 | Diana B, Ali E, Anirud V S. Reduced wear and friction enabled by graphene layers on sliding steel surfaces in dry nitrogen[J]. Carbon, 2013, 59(8): 167-175. |
5 | Zhai W Z, Shi X L, Wang M, et al. Grain refinement: a mechanism for graphene nanoplatelets to reduce friction and wear of Ni3Al matrix self-lubricating composites[J]. Wear, 2014, 310(1/2): 33-40. |
6 | Njiwa P, Hadj-Aissa A, Afanasiev P, et al. Tribological properties of new MoS2 nanoparticles prepared by seed-assisted solution technique[J]. Tribology Letters, 2014, 55(3): 473-481. |
7 | E S F, Ye X Y, Zhu Z Z, et al. Tuning the structures of boron nitride nanosheets by template synthesis and their application as lubrication additives in water[J]. Applied Surface Science, 2019, 479: 119-127. |
8 | Pawlak Z, Pai R, Bayraktar E, et al. Lamellar lubrication in vivo and vitro: friction testing of hexagonal boron nitride[J]. Biosystems, 2008, 94(3): 202-208. |
9 | Singh D, Li L H, Chen Y, et al. High-efficient production of boron nitride nanosheets via an optimized ball milling process for lubrication in oil[J]. Scientific Reports, 2015, 4: 7288. |
10 | Jaiswal V, Kalkhanday K, Umrao S, et al. Synthesis, characterization, and tribological evaluation of TiO2-reinforced boron and nitrogen co-doped reduced graphene oxide based hybrid nanomaterials as efficient antiwear lubricant additives [J]. ACS Applied Materials & Interfaces, 2016, 8(18): 11698-11710. |
11 | Sato K, Horibe H, Shirai T, et al. Thermally conductive composite films of hexagonal boron nitride and polyimide with affinity-enhanced interfaces[J]. Journal of Materials Chemistry, 2010, 20(14): 2749-2752. |
12 | Perkin S. Ionic liquids in confined geometries[J]. Physical Chemistry Chemical Physics, 2012, 14(15): 5052-5062. |
13 | Battez A H, Gonzalez R, Viesca J L, et al. Tribological behaviour of two imidazolium ionic liquids as lubricant additives for steel/steel contacts[J]. Wear, 2009, 266(11/12): 1224-1228. |
14 | Qu J, Chi M, Meyer H M, et al. Nanostructure and composition of tribo-boundary films formed in ionic liquid lubrication[J]. Tribology Letters, 2011, 43(2): 205-211. |
15 | 刘维民,叶承峰,王海忠. 烷基咪唑四氟硼酸盐离子液作为润滑剂的摩擦学性能[J]. 摩擦学学报, 2001, 21(6): 482-484. |
Liu W M, Ye C F, Wang H Z, et al. Tribological behavior of the ionic liquid of alkylimidazolium tetrafluoroborate as an additive[J]. Tribology, 2001, 21(6): 482-484. | |
16 | Guo Y X, Guo L H, Li G T, et al. Solvent-free ionic nanofluids based on graphene oxide-silica hybrid as high-performance lubricating additive[J]. Applied Surface Science, 2019, 471: 482-493. |
17 | Kobayashi M, Koide T, Hyon S H. Tribological characteristics of polyethylene glycol (PEG) as a lubricant for wear resistance of ultra-high-molecular-weight polyethylene (UHMWPE) in artificial knee join[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 38: 33-38. |
18 | Wang B B, Hu E Z, Tu Z Q, et al. Characterization and tribological properties of rice husk carbon nanoparticles co-doped with sulfur and nitrogen[J]. Applied Surface Science, 2018, 462(31): 944-954. |
19 | Sen N, Singh K K, Mukhopadhyay S, et al. On continuous, solvent-free synthesis of ionic liquid [BMIM]Br in a microbore tube[J]. Journal of Radioanalytical & Nuclear Chemistry, 2016, 307(2): 1001-1009. |
20 | Kim T Y, Lee H W, Kim J E, et al. Synthesis of phase transferable graphene sheets using ionic liquid polymers[J]. ACS Nano, 2010, 4(3): 1612-1618. |
21 | Mo Y F, Wan Y F, Chau A, et al. Graphene/ionic liquid composite films and ion exchange[J]. Scientific Reports, 2014, 4: 5466. |
22 | Gusain R, Mungse H, Kumar N, et al. Covalently attached graphene-ionic liquid hybrid nanomaterials: synthesis, characterization and tribological application[J]. Jourmal of Materials Chemistry A, 2016, 4(3): 926-937. |
23 | Kumari S, Sharma O P, Gusain R, et al. Alkyl-chain-grafted hexagonal boron nitride nanoplatelets as oil-dispersible additives for friction and wear reduction[J]. ACS Applied Materials & Interfaces, 2015,7(6): 3708-3716. |
24 | 孙佳. 氮化硼负载杂多酸催化氧化燃油深度脱硫研究[D]. 镇江:江苏大学, 2017. |
Sun J. Boron nitride supported heteropoly acid for catalytic oxidative deep desulfurization of fuels[D]. Zhenjiang: Jiangsu University, 2017. | |
25 | Fu L, Wang T, Yu J H, et al. An ultrathin high-performance heat spreader fabricated with hydroxylated boron nitride nanosheets[J]. 2D Materials, 2017, 4(2): 025047. |
26 | Zhu W S, Dai B L, Wu P W, et al. Graphene-Analogue hexagonal BN supported with tungsten-based ionic liquid for oxidative desulfurization of fuels[J]. ACS Sustainable Chemistry&Engineering, 2015, 3(1): 186-194. |
27 | Morishita T, Takahashi N. Highly thermally conductive and electrically insulating polymer nanocomposites with boron nitride nanosheet/ionic liquid complexes[J]. RSC Advances, 2017, 7(58): 36450-36459. |
28 | Wang L X, Han W F, Ge C H, et al. Covalent functionalized boron nitride nanosheets as efficient lubricant oil additives[J]. Advanced Materials Interfaces, 2019, 6(21): 1901172. |
29 | Mahyari M, Shaabani A, Bide Y. Gold nanoparticles supported on supramolecular ionic liquid grafted graphene: a bifunctional catalyst for the selective aerobic oxidation of alcohols[J]. RSC Advances, 2013, 3(44): 22509-22517. |
30 | Wu L Y, Wu K, Lei C X, et al. Surface modifications of boron nitride nanosheets for poly(vinylidene fluoride) based film capacitor: artful virtue of edge-hydroxylation[J]. Journal of Materials Chemistry A, 2019, 7(13):7664-7674. |
31 | Xiao F, Naficy S, Casillas G, et al. Edge-hydroxylated boron nitride nanosheets as an effective additive to improve the thermal response of hydrogels[J]. Advanced Materials, 2015, 27(44): 7247-7247. |
32 | Zhang H N, Pan J J, He X C, et al. Zeta potential of nafion molecules in isopropanol-water mixture solvent[J]. Journal of Applied Polymer Science, 2008, 107(5): 3306-3309. |
33 | Khoo K S, Teh E J, Leong Y K, et al. Hydrogen bonding and interparticle forces in platelet α-Al2O3 dispersions: yield stress and zeta potential[J]. Langmuir, 2009, 25(6):3418-3424. |
34 | Zheng Z Y, Cox M, Li B. Surface modification of hexagonal boron nitride nanomaterials: a review[J]. Journal of Materials Science, 2018, 53(1): 66-99. |
35 | 于鹤龙, 徐滨士, 许一, 等. 纳米铜添加剂改善钢-铝摩擦副摩擦磨损性能的研究[J]. 摩擦学学报, 2006, 26(5): 433-438. |
Yu H L, Xu B S, Xu Y, et al. Friction and sliding-wear behavior of steel-aluminum tribopair improved by nanocopper additive[J]. Tribology, 2006, 26(5): 433-438. | |
36 | Bas H, Karabacak Y E. Investigation of the effects of boron additives on the performance of engine oil[J]. Tribology Transactions, 2014, 57(4): 740-748. |
37 | Wu H X, Qin L G, Zeng Q F, et al. Understanding the physical adsorption action mechanism of MoS2,nanoparticles in boundary lubrication with different polyisobutyleneamine succinimide(PIBS) concentrations[J]. Tribology Letters, 2015, 60(2): 26. |
38 | Song W, Yan J C, Ji H B. Fabrication of GNS/MoS2 composite with different morphology and its tribological performance as a lubricant additive[J]. Applied Surface Science, 2019, 469: 226-235. |
39 | Lee K, Hwang Y, Cheong S, et al. Understanding the role of nanoparticles in nano-oil lubrication[J]. Tribology Letters, 2009, 35(2): 127-131. |
40 | Alazemi A, Etacheri V, Dysart A D, et al. Ultrasmooth submicrometer carbon spheres as lubricant additives for friction and wear reduction[J]. ACS Applied Materials & Interfaces, 2015, 7(9): 5514-5521. |
41 | Ma S Y, Zheng S H, Cao D X, et al. Anti-wear and friction performance of ZrO2 nanoparticles as lubricant additive[J]. Particuology, 2010, 8(5):468-472. |
42 | He J Q, Sun J L, Meng Y N, et al. Preliminary investigations on the tribological performance of hexagonal boron nitride nanofluids as lubricant for steel/steel friction pairs[J]. Surface Topography Metrology & Properties, 2019, 7(1): 015022. |
43 | Song W, Yan J C, Ji H B. Tribological study of SOCNTs@MoS2 composite as a lubricant additive: synergistic effect[J]. Industrial & Engineering Chemistry Research, 2018, 57(20): 6878-6887. |
[1] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[2] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[3] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[4] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[5] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[6] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[7] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[8] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[9] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[10] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[11] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[12] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[13] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[14] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[15] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||