CIESC Journal ›› 2020, Vol. 71 ›› Issue (12): 5551-5560.DOI: 10.11949/0438-1157.20200408
• Catalysis, kinetics and reactors • Previous Articles Next Articles
WANG Chen1,2(),CHEN Zexiang1(),WANG Jianqiang1,SHEN Meiqing1,3,WANG Jun1()
Received:
2020-04-17
Revised:
2020-07-12
Online:
2020-12-05
Published:
2020-12-05
Contact:
WANG Jun
王晨1,2(),陈泽翔1(),王建强1,沈美庆1,3,王军1()
通讯作者:
王军
作者简介:
王晨(1987—),男,博士,讲师,基金资助:
CLC Number:
WANG Chen,CHEN Zexiang,WANG Jianqiang,SHEN Meiqing,WANG Jun. Comparison study of Na poisoning effect on copper-based chabazite micropore catalysts for NH3-SCR reaction[J]. CIESC Journal, 2020, 71(12): 5551-5560.
王晨,陈泽翔,王建强,沈美庆,王军. 基于NH3-SCR反应铜基小孔分子筛催化剂Na中毒对比研究[J]. 化工学报, 2020, 71(12): 5551-5560.
Add to citation manager EndNote|Ris|BibTeX
样品 | 比表面积①/(m2/g) | 下降率②/% | Cu含量/ %(质量) |
---|---|---|---|
Cu-SZ before aging | 806 | — | — |
Cu-SZ | 792 | — | 2.07 |
1.82Na-SZ | 526 | 34 | 1.99 |
3.69 Na-SZ | 363 | 54 | 2.00 |
6.04 Na-SZ | 107 | 86 | 1.81 |
7.27 Na-SZ | 4 | 99 | 1.68 |
Cu-SP before aging | 795 | — | — |
Cu-SP | 790 | — | 1.40 |
1.82 Na-SP | 633 | 20 | 1.32 |
3.48 Na-SP | 96 | 88 | 1.42 |
6.33 Na-SP | 47 | 94 | 1.40 |
7.75 Na-SP | 4 | 99 | 1.36 |
Table 1 BET specific surface areas of Cu/SSZ-13 and Cu/SAPO-34 with different Na contents
样品 | 比表面积①/(m2/g) | 下降率②/% | Cu含量/ %(质量) |
---|---|---|---|
Cu-SZ before aging | 806 | — | — |
Cu-SZ | 792 | — | 2.07 |
1.82Na-SZ | 526 | 34 | 1.99 |
3.69 Na-SZ | 363 | 54 | 2.00 |
6.04 Na-SZ | 107 | 86 | 1.81 |
7.27 Na-SZ | 4 | 99 | 1.68 |
Cu-SP before aging | 795 | — | — |
Cu-SP | 790 | — | 1.40 |
1.82 Na-SP | 633 | 20 | 1.32 |
3.48 Na-SP | 96 | 88 | 1.42 |
6.33 Na-SP | 47 | 94 | 1.40 |
7.75 Na-SP | 4 | 99 | 1.36 |
样品 | 酸总量/μmol | 样品 | 酸总量/μmol |
---|---|---|---|
Cu-SZ | 65.9 | Cu-SP | 66.1 |
1.82Na-SZ | 24.1 | 1.82Na-SP | 49.0 |
3.69Na-SZ | 13.8 | 3.48Na-SP | 5.6 |
6.04Na-SZ | 7.7 | 6.33Na-SP | 1.5 |
7.27Na-SZ | 1.4 | 7.75Na-SP | 0.7 |
Table 2 Acidity quantification of Cu/SSZ-13 and Cu/SAPO-34 catalysts based on NH3-TPD results
样品 | 酸总量/μmol | 样品 | 酸总量/μmol |
---|---|---|---|
Cu-SZ | 65.9 | Cu-SP | 66.1 |
1.82Na-SZ | 24.1 | 1.82Na-SP | 49.0 |
3.69Na-SZ | 13.8 | 3.48Na-SP | 5.6 |
6.04Na-SZ | 7.7 | 6.33Na-SP | 1.5 |
7.27Na-SZ | 1.4 | 7.75Na-SP | 0.7 |
样品 | Cu含量/% | |||
---|---|---|---|---|
8MR Cu2+ | 6MR Cu2+ | CuO | CuAlO2 | |
Cu-SZ | 35 | 61 | 4 | — |
1.82Na-SZ | 18 | 76 | 6 | — |
3.69Na-SZ | 14 | 46 | 4 | 36 |
Cu-SP | 46 | 43 | 11 | — |
1.82Na-SP | 35 | 50 | 15 | — |
Table 3 Quantification results of Cu containing species based on H2-TPR
样品 | Cu含量/% | |||
---|---|---|---|---|
8MR Cu2+ | 6MR Cu2+ | CuO | CuAlO2 | |
Cu-SZ | 35 | 61 | 4 | — |
1.82Na-SZ | 18 | 76 | 6 | — |
3.69Na-SZ | 14 | 46 | 4 | 36 |
Cu-SP | 46 | 43 | 11 | — |
1.82Na-SP | 35 | 50 | 15 | — |
1 | 杨光. 世界上第一辆汽油车奔弛1号[J]. 时代汽车, 2013, (12): 92-93. |
Yang G. The first car in the world: Benz patent motor[J]. Auto Time, 2013, (12): 92-93. | |
2 | 李莹莹. 京津冀机动车污染物排放总量测算及减排防控策略研究[D]. 天津: 天津理工大学, 2015. |
Li Y Y. Research on total amount of vehicular emission in Beijing-Tianjin-Hebei (BTH) region and its abatement control strategy[D]. Tianjin: Tianjin University of Technology, 2015. | |
3 | 王小霞. 道路机动车尾气污染物排放量的预测与控制措施研究[D]. 西安: 长安大学, 2012. |
Wang X X. Study on prediction and control measures of motor vehicle pollutant emission[D].Xian: Changan University, 2012. | |
4 | 李玉辉.机动车污染及防治对策[J]. 环境科学与技术, 2000, 2: 37-38. |
Li Y H. Motor vehicle pollution and its prevention and control countermeasures[J]. Environmental Science and Technology, 2000, 2: 37-38. | |
5 | 中华人民共和国生态环境部. 中国移动源环境管理年报(2019)[R].北京: 中华人民共和国生态环境部, 2019. |
Ministry of Ecology and Environment of the Peoples Republic of China. China Mobile Source Environmental Management Annual Report(2019)[R]. Beijing: Ministry of Ecology and Environment of the Peoples Republic of China, 2019. | |
6 | Busca G, Lietti L, Ramis G, et al. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: a review [J]. Applied Catalysis B: Environmental, 1998, 18(1): 1-36. |
7 | 苏岭, 周龙保, 蒋德明, 等. 柴油机排气后处理技术的现代进展[J]. 内燃机, 2003, (1): 1-8. |
Su L, Zhou L B, Jiang D M, et al. Recent development of aftertreatment of diesel emissions[J]. Internal Combustion Engines, 2003, (1): 1-8. | |
8 | Forzatti P, Lietti L, Nova I, et al. Diesel NOx aftertreatment catalytic technologies: analogies in LNT and SCR catalytic chemistry[J]. Catalysis Today, 2010, 151(3/4): 202-211. |
9 | Girard J, Cavataio G, Snow R, et al. Combined Fe-Cu SCR systems with optimized ammonia to NOx ratio for diesel NOx control[J]. SAE International Journal of Fuels and Lubricants, 2009, 1(1): 603-610. |
10 | Arous W, Tounsi H, Djemel S, et al. Selective catalytic reduction of nitric oxide with ammonia on copper (Ⅱ) ion-exchanged offretite[J]. Catalysis Communications, 2005, 6(4): 281-285. |
11 | Sjvall H, Olsson L, Fridell E, et al. Selective catalytic reduction of NOx with NH3 over Cu-ZSM-5: the effect of changing the gas composition[J]. Applied Catalysis B: Environmental, 2006, 64(3/4): 180-188. |
12 | Delahay G, Kieger S, Tanchoux N, et al. Kinetics of the selective catalytic reduction of NO by NH3 on a Cu-faujasite catalyst[J]. Applied Catalysis B: Environmental, 2004, 52(4): 251-257. |
13 | Baik J H, Yim S D, Nam I, et al. Modeling of monolith reactor washcoated with CuZSM5 catalyst for removing NO from diesel engine by urea[J]. Industrial & Engineering Chemistry Research, 2006, 45(15): 5258-5267. |
14 | 韩斌, 雷志刚, 刘茜, 等. 碱金属化合物对V2O5/AC催化剂低温脱硝的影响[J].化工学报, 2013, 64(8): 2867-2874. |
Han B, Lei Z G, Liu Q, et al. Influence of alkali metal compound on low-temperature NH3-SCR of NO over V2O5/AC catalyst[J].CIESC Journal, 2013, 64(8): 2867-2874. | |
15 | Williams A, Mccormick R, Lance M, et al. Effect of accelerated aging rate on the capture of fuel-borne metal impurities by emissions control devices [J]. SAE International Journal of Fuels and Lubricants, 2014, 7(2): 471-479. |
16 | Wang C, Wang C, Wang J, et al. Effects of Na+ on Cu/SAPO-34 for ammonia selective catalytic reduction [J]. Journal of Environmental Sciences, 2018, 70: 20-28. |
17 | Chen Z, Wang J, Wang J, et al. Disparate essences of residual, ion-exchanged, and impregnated Na ions on topology structure for Cu/SSZ-13 NH3 selective catalytic reduction catalysts [J]. Industrial & Engineering Chemistry Research, 2019, 58(45): 20610-20619. |
18 | Wang J, Zhao H, Haller G, et al. Recent advances in the selective catalytic reduction of NOx with NH3 on Cu-Chabazite catalysts [J]. Applied Catalysis B: Environmental, 2017, 202: 346-354. |
19 | Wang D, Jangjou Y, Liu Y, et al. A comparison of hydrothermal aging effects on NH3-SCR of NOx over Cu-SSZ-13 and Cu-SAPO-34 catalysts [J]. Applied Catalysis B: Environmental, 2015, 165: 438-445. |
20 | Su W, Li Z, Peng Y, et al. Correlation of the changes in the framework and active Cu sites for typical Cu/CHA zeolites (SSZ-13 and SAPO-34) during hydrothermal aging [J]. Physical Chemistry Chemical Physics, 2015, 17(43): 29142-29149. |
21 | Zones S. Zeolite SSZ-13 and its method of preparation: US 4544538A[P]. 1985-10-1. |
22 | Niu C, Shi X Y, Liu F D, et al. High hydrothermal stability of Cu-SAPO-34 catalysts for the NH3-SCR of NOx[J]. Chemical Engineering Journal, 2016, 294: 254-263. |
23 | Kim Y J, Lee J K, Min K M, et al. Hydrothermal stability of CuSSZ13 for reducing NOx by NH3[J]. Journal of Catalysis, 2014, 311: 447-457. |
24 | Zhang J M, Liu X Y, Li M, et al. Fast synthesis of submicron all-silica CHA zeolite particles using a seeding method[J]. RSC Advances, 2015, 5: 27087-27090. |
25 | Schmieg S, Oh S, Kim C, et al. Thermal durability of Cu-CHA NH3-SCR catalysts for diesel NOx reduction[J]. Catalysis Today, 2012, 184(1): 252-261. |
26 | Gedeon A. Zeolites and Related Materials: Trends, Targets and Challenges[M]. Massiani P, Babonneau F. 4th ed. UK: Elsevier, 2008: 265. |
27 | Kumar M, Luo H, Román-Leshkov Y, et al. SSZ-13 crystallization by particle attachment and deterministic pathways to crystal size control[J]. Journal of the American Chemical Society, 2015, 137(40): 13007-13017. |
28 | Ma L, Cheng Y S, Cavataio G, et al. Characterization of commercial Cu-SSZ-13 and Cu-SAPO-34 catalysts with hydrothermal treatment for NH3-SCR of NOx in diesel exhaust[J]. Chemical Engineering Journal, 2013, 225: 323-330. |
29 | Luo J Y, Kamasamudram K, Currier N, et al. NH3-TPD methodology for quantifying hydrothermal aging of Cu/SSZ-13 SCR catalysts[J]. Chemical Engineering Science, 2018, 190: 60-67. |
30 | Yu T, Wang J, Shen M Q, et al. NH3-SCR over Cu/SAPO-34 catalysts with various acid contents and low Cu loading[J]. Catalysis Science & Technology, 2013, 3: 3234-3241. |
31 | Ma L, Cheng Y, Cavataio G, et al. In situ DRIFTS and temperature-programmed technology study on NH3-SCR of NOx over Cu-SSZ-13 and Cu-SAPO-34 catalysts [J]. Applied Catalysis B: Environmental, 2014, 156/157: 428-437. |
32 | Luo J, Gao F, Kamasamudram K, et al. New insights into Cu/SSZ-13 SCR catalyst acidity(Ⅰ): Nature of acidic sites probed by NH3 titration [J]. Journal of Catalysis, 2017, 348: 291-299. |
33 | Cui Y, Wang Y, Walter E D, et al. Influences of Na+ co-cation on the structure and performance of Cu/SSZ-13 selective catalytic reduction catalysts [J]. Catalysis Today, 2020, 339: 233-240. |
34 | Gao F, Walter E D, Karp E M, et al. Structure-activity relationships in NH3-SCR over Cu-SSZ-13 as probed by reaction kinetics and EPR studies [J]. Journal of Catalysis, 2013, 300: 20-29. |
35 | Deka U, Juhin A, Eilertsen E A, et al. Confirmation of isolated Cu2+ ions in SSZ-13 zeolite as active sites in NH3-selective catalytic reduction [J]. The Journal of Physical Chemistry C, 2012, 116(7): 4809-4918. |
36 | Wang C, Wang J, Wang J, et al. The role of impregnated sodium ions in Cu/SSZ-13 NH3-SCR catalysts [J]. Catalysts, 2018, 8(12): 593. |
[1] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[2] | Xiaoxiong FAN, Lifang HAO, Chuigang FAN, Songgeng LI. Study on the catalytic denitrification performance of low-temperature NH3-SCR over LaMnO3/biochar catalyst [J]. CIESC Journal, 2023, 74(9): 3821-3830. |
[3] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[4] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
[5] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[6] | Yuhao CHEN, Xiaoping CHEN, Jiliang MA, Cai LIANG. Gaseous pollutants emissions from rotary kiln combustion of municipal sewage sludge [J]. CIESC Journal, 2023, 74(5): 2170-2178. |
[7] | Yongquan ZHANG, Weiwei XUAN. Mechanism of alkali metal/(FeO+CaO+MgO) influence on the structure and viscosity of silicate ash slag [J]. CIESC Journal, 2023, 74(4): 1764-1771. |
[8] | Jinfeng HE, Xiuzhen LI, Jianyao KOU, Tingjie TAO, Can YU, Huan LIU, Yongyuan CHEN, Haojian ZHAO, Dahao JIANG, Xiaonian LI. Ethanol upgrading to higher alcohols over ordered mesoporous alumina supported Cu-based catalysts [J]. CIESC Journal, 2023, 74(3): 1082-1091. |
[9] | Hao ZHANG, Ziyue WANG, Yujie CHENG, Xiaohui HE, Hongbing JI. Progress in the mass production of single-atom catalysts [J]. CIESC Journal, 2023, 74(1): 276-289. |
[10] | Hao XIONG, Xiaoyu LIANG, Chenxi ZHANG, Haolong BAI, Xiaoyu FAN, Fei WEI. Heavy oil to chemicals: multi-stage downer catalytic pyrolysis [J]. CIESC Journal, 2023, 74(1): 86-104. |
[11] | Yuen BAI, Binrui ZHANG, Dongyang LIU, Liang ZHAO, Jinsen GAO, Chunming XU. Influence of synergistic effect of acid properties and pore structure of ZSM-5 zeolite on the catalytic cracking performance of pentene [J]. CIESC Journal, 2023, 74(1): 438-448. |
[12] | Wenjing ZHANG, Jing LI, Zidong WEI. Electrocatalysis from a mesoscale perspective: interface, membrane and porous electrode [J]. CIESC Journal, 2022, 73(6): 2289-2305. |
[13] | Jiayi WANG, Chuigang FAN, Songgeng LI. Role of carbon-oxygen complexes on low temperature reduction of NO by coal char [J]. CIESC Journal, 2022, 73(5): 2140-2148. |
[14] | Xu WANG, Leyao ZHANG, Haoxuan ZHANG, Jiahui YAN, Yushuai WU, Dong WU, Huiyong CHEN, Xiaoxun MA. Effect of hollow structure on the acetone adsorption property of tungsten-substituted MFI zeolite [J]. CIESC Journal, 2022, 73(3): 1194-1206. |
[15] | Chang SU, Xiaobo FENG, Liyun ZHANG, Feng CHEN, Xiaoyan ZHAO, Jingpei CAO. Effect of tetraethylammonium hydroxide treatment on the structure of HMOR zeolite and its catalytic performance in the carbonylation of dimethyl ether [J]. CIESC Journal, 2022, 73(2): 712-721. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||