CIESC Journal ›› 2021, Vol. 72 ›› Issue (S1): 406-412.DOI: 10.11949/0438-1157.20210169
• Catalysis, kinetics and reactors • Previous Articles Next Articles
LI Tengfei1(),MIAO Yun2,YANG Liu1,WANG Longyao2,ZHU Huacheng3
Received:
2021-01-25
Revised:
2021-02-24
Online:
2021-06-20
Published:
2021-06-20
Contact:
LI Tengfei
通讯作者:
李腾飞
作者简介:
李腾飞(1990—),男,博士,高级工程师,基金资助:
CLC Number:
LI Tengfei, MIAO Yun, YANG Liu, WANG Longyao, ZHU Huacheng. Microwave enhanced ion exchange technology of Y molecular sieve[J]. CIESC Journal, 2021, 72(S1): 406-412.
李腾飞, 缪赟, 杨柳, 王龙耀, 朱铧丞. 微波强化Y型分子筛离子交换技术[J]. 化工学报, 2021, 72(S1): 406-412.
Add to citation manager EndNote|Ris|BibTeX
化合物 | 平均粒径/nm | Na2O质量分数/% | SiO2/Al2O3摩尔比 | 相对结晶/% | 总比表面积/(m2/g) | 总孔体积/(ml/g) | 骨架坍塌温度/℃ |
---|---|---|---|---|---|---|---|
NaY | 1000 | 12.71 | 5.2 | 88 | 750 | 0.415 | 928 |
NaNH4Y | 980 | 3.85 | 5.2 | 86 | 648 | 0.310 | 985 |
Table 1 Physicochemical properties of molecular sieves
化合物 | 平均粒径/nm | Na2O质量分数/% | SiO2/Al2O3摩尔比 | 相对结晶/% | 总比表面积/(m2/g) | 总孔体积/(ml/g) | 骨架坍塌温度/℃ |
---|---|---|---|---|---|---|---|
NaY | 1000 | 12.71 | 5.2 | 88 | 750 | 0.415 | 928 |
NaNH4Y | 980 | 3.85 | 5.2 | 86 | 648 | 0.310 | 985 |
交换方法 | 交换时间/min | Na2O质量分数/% | Re2O3质量 分数/% |
---|---|---|---|
微波辅助加热(REY-B) | 15 | 1.10 | 19.97 |
常规方式加热(REY-A) | 60 | 1.77 | 18.14 |
120 | 1.32 | 18.43 | |
180 | 1.16 | 18.85 | |
240 | 1.09 | 19.47 |
Table 2 Comparison experimental results of NaNH4Y molecular sieves by hydrothermal ion exchange
交换方法 | 交换时间/min | Na2O质量分数/% | Re2O3质量 分数/% |
---|---|---|---|
微波辅助加热(REY-B) | 15 | 1.10 | 19.97 |
常规方式加热(REY-A) | 60 | 1.77 | 18.14 |
120 | 1.32 | 18.43 | |
180 | 1.16 | 18.85 | |
240 | 1.09 | 19.47 |
编号 | 升温时间/min | 恒温交换 时间/min | Na2O质量 分数/% | Re2O3质量 分数/% |
---|---|---|---|---|
REY-B-1 | 15 | 5 | 1.27 | 19.65 |
REY-B-2 | 15 | 10 | 1.12 | 19.97 |
REY-B-3 | 15 | 15 | 1.10 | 19.80 |
REY-B-4 | 15 | 20 | 1.06 | 20.01 |
Table 3 Experimental results of microwave-assisted hydrothermal exchange at different exchange times
编号 | 升温时间/min | 恒温交换 时间/min | Na2O质量 分数/% | Re2O3质量 分数/% |
---|---|---|---|---|
REY-B-1 | 15 | 5 | 1.27 | 19.65 |
REY-B-2 | 15 | 10 | 1.12 | 19.97 |
REY-B-3 | 15 | 15 | 1.10 | 19.80 |
REY-B-4 | 15 | 20 | 1.06 | 20.01 |
分子筛 | 晶胞常数/nm | 相对 结晶度/% | 比表面积/ (m2/g) | 坍塌温度/℃ |
---|---|---|---|---|
REY | 2.471 | 48 | 601 | 1011 |
REY-B | 2.469 | 48 | 618 | 1028 |
Table 4 Relative crystallinity, cell parameters and specific surface area of molecular sieves
分子筛 | 晶胞常数/nm | 相对 结晶度/% | 比表面积/ (m2/g) | 坍塌温度/℃ |
---|---|---|---|---|
REY | 2.471 | 48 | 601 | 1011 |
REY-B | 2.469 | 48 | 618 | 1028 |
催化剂 | Na2O/% | Cl-/% | SO42-/% | 比表面积/(m2/g) | 孔容/(ml/g) | MAT(800℃/4 h) | MAT(800℃/17 h) |
---|---|---|---|---|---|---|---|
催化剂X | 0.21 | 1.27 | 0.47 | 261.3 | 0.28 | 79.3 | 62.3 |
催化剂Y | 0.14 | 0.63 | 0.59 | 264.6 | 0.28 | 80.0 | 62.5 |
Table 5 Main physicochemical properties of molecular sieve catalysts
催化剂 | Na2O/% | Cl-/% | SO42-/% | 比表面积/(m2/g) | 孔容/(ml/g) | MAT(800℃/4 h) | MAT(800℃/17 h) |
---|---|---|---|---|---|---|---|
催化剂X | 0.21 | 1.27 | 0.47 | 261.3 | 0.28 | 79.3 | 62.3 |
催化剂Y | 0.14 | 0.63 | 0.59 | 264.6 | 0.28 | 80.0 | 62.5 |
1 | Ma W Q, Hong T, Xie T, et al. Simulation and analysis of oleic acid pretreatment for microwave-assisted biodiesel production [J]. Processes, 2018, 6(9): 142. |
2 | 景超, 李晓峰, 王艳悦, 等. 微波场辅助离子交换制备NH4+-LSX型分子筛[J]. 现代化工, 2015, 35(6): 91-94. |
Jing C, Li X F, Wang Y Y, et al. Microwave field assisted ion exchange for preparation of NH4+-LSX molecular sieves [J]. Modern Chemical Industry, 2015, 35(6): 91-94. | |
3 | 曾昭文, 郑成, 毛桃嫣, 等. 微波在化工过程中的研究及应用进展 [J]. 化工学报, 2019, 70(S1): 1-14. |
Zeng Z W, Zheng C, Mao T Y, et al. Progress in research and application of microwave in chemical process [J]. CIESC Journal, 2019, 70(S1): 1-14. | |
4 | Chindaprasirt P, Rattanasak U, Taebuanhuad S. Role of microwave radiation in curing the fly ash geopolymer [J]. Advanced Powder Technology, 2013, 24(3): 703-707. |
5 | 金钦汉, 戴树珊, 黄卡玛. 微波化学[M]. 北京: 科学出版社, 1999: 3-5. |
Jin Q H, Dai S S, Huang K M. Microwave Chemistry [M]. Beijing: Science Press, 1999: 3-5. | |
6 | Gedye R, Smith F, Westaway K, et al. The use of microwave ovens for rapid organic synthesis [J]. Tetrahedron Letters, 1986, 27(3): 279-282. |
7 | 王栋, 张信莉, 路春美, 等. 微波热解制备γ-Fe2O3催化剂及其SCR脱硝性能[J]. 化工学报, 2014, 65(12): 4805-4813. |
Wang D, Zhang X L, Lu C M, et al. Microwave-assisted preparation of γ-Fe2O3 as SCR catalysts [J]. CIESC Journal, 2014, 65(12): 4805-4813. | |
8 | 韩洪军, 牟晋铭, 马文成, 等. 微波辐射对青霉素菌渣破壁效果的影响[J]. 化工学报, 2013, 64(10): 3812-3817. |
Han H J, Mou J M, Ma W C, et al. Effect of microwave on cell wall broken of penicillin fermentation residue [J]. CIESC Journal, 2013, 64(10): 3812-3817. | |
9 | 崔亚鹏, 张国治, 张康逸. 微波处理对食品风味及营养成分影响的研究进展[J]. 粮食加工, 2020, 45(6): 62-65. |
Cui Y P, Zhang G Z, Zhang K Y. Research progress on effects of microwave treatment on food flavor and nutritional components [J]. Grain Processing, 2020, 45(6): 62-65. | |
10 | 唐剑骁, 马丽萍, 王冬东, 等. 微波对Cu-ZSM-5催化剂结构及低温NH3-SCR脱硝活性的影响[J]. 人工晶体学报, 2017, 46(8): 1569-1574. |
Tang J X, Ma L P, Wang D D, et al. Influence of microwave on the structure and NH3-SCR denitration activity of Cu-ZSM-5 catalysts [J]. Journal of Synthetic Crystals, 2017, 46(8): 1569-1574. | |
11 | Katsuki H, Furuta S, Komarneni S. Microwave versus conventional-hydrothermal synthesis of NaY zeolite [J]. Journal of Porous Materials, 2001, 8(1): 5-12. |
12 | Nigar H, Sturm G S J, Garcia-Baños B, et al. Numerical analysis of microwave heating cavity: combining electromagnetic energy, heat transfer and fluid dynamics for a NaY zeolite fixed-bed [J]. Applied Thermal Engineering, 2019, 155: 226-238. |
13 | Zubowa H L, Kosslick H, Müller D, et al. Crystallization of phase-pure zeolite NaP from MCM-22-type gel compositions under microwave radiation [J]. Microporous and Mesoporous Materials, 2008, 109(1/2/3): 542-548. |
14 | 罗羽裳, 张天芳, 杨凌云, 等. 微波辐照离子交换法制备Cu-ZSM-5和Cu-ZSM-11 [J]. 离子交换与吸附, 2016, 32(6): 568-576. |
Luo Y S, Zhang T F, Yang L Y, et al. Preparing Cu-ZSM-5 and Cu-ZSM-11 by ion-exchange under microwave irradiation [J]. Ion Exchange and Adsorption, 2016, 32(6): 568-576. | |
15 | 王莹, 任浩, 关磊. 稀土发光纳米材料的制备与应用研究进展[J]. 辽宁石油化工大学学报, 2016, 36(4): 8-12. |
Wang Y, Ren H, Guan L. Progress in research of preparation and application of rare earth luminescent nanomaterials [J]. Journal of Liaoning Shihua University, 2016, 36(4): 8-12. | |
16 | 王栋, 刘涛, 蔡军平, 等. 稀土改性Y型分子筛的研究进展[J]. 应用化工, 2014, 43(1): 165-168. |
Wang D, Liu T, Cai J P, et al. Research advance in zeolite Y modified by rare earth [J]. Applied Chemical Industry, 2014, 43(1): 165-168. | |
17 | 潘元青, 钱军. 催化裂化技术现状及发展趋势[J]. 石化技术, 2003, 10(1): 45-49. |
Pan Y Q, Qian J. Status and development of fluid catalytic cracking technologies [J]. Petrochemical Industry Technology, 2003, 10(1): 45-49. | |
18 | Fillipe A C G, Araújo D R, Silva J C M, et al. Effect of cerium loading on structure and morphology of modified Ce-USY zeolites [J]. Journal of the Brazilian Chemical Society, 2011, 22(10): 1894-1902. |
19 | Geng W, Zhang H T, Zhao X F, et al. Theoretical studies of the nitrogen containing compounds adsorption behavior on Na(Ⅰ)Y and rare earth exchanged RE(Ⅲ)Y zeolites [J]. Journal of Molecular Modeling, 2015, 21(1): 1-9. |
20 | 杨柳, 李腾飞, 任靖, 等. 微波技术在分子筛离子交换中的研究与应用[J]. 中外能源, 2019, 24(7): 69-73. |
Yang L, Li T F, Ren J, et al. Research and application of microwave irradiation in ion exchange of molecular sieve [J]. Sino-Global Energy, 2019, 24(7): 69-73. | |
21 | 徐如人, 俞国祯, 陆玉琴, 等. La3+-NaY型沸石的水热交换反应[J]. 高等学校化学学报, 1980, 1(1): 1-8. |
Xu R R, Yu G Z, Lu Y Q, et al. The mechanism of La3+-NaY ion-exchange reaction [J]. Chemical Research in Chinese Universities, 1980, 1(1): 1-8. | |
22 | Mobley M C. FCC equipment type approval program with reference to microwave oven tests [J]. Journal of Microwave Power, 1971, 6(4): 297-303. |
23 | Zhukova Y M, Shelyapinaa M G, Zvereva I A, et al. Microwave assisted versus convention Cu2+ exchange in mordenite [J]. Microporous and Mesoporous Materials, 2018, 259: 220-228. |
24 | Zhang J C, Wang W, Li B X, et al. Self-assembled NaY(WO4)2 hierarchical dumbbells: microwave-assisted hydrothermal synthesis and their tunable upconversion luminescent properties [J]. European Journal of Inorganic Chemistry, 2012, 2012(13): 2220-2225. |
25 | 凌云, 郑玉婷, 刘月明, 等. 微波辅助晶化法合成MCM-22分子筛的研究[J]. 化学学报, 2010, 68(20): 2035-2040. |
Ling Y, Zheng Y T, Liu Y M, et al. A study on microwave-assisted synthesis of MCM-22 zeolite [J]. Acta Chimica Sinica, 2010, 68(20): 2035-2040. | |
26 | 房奎圳, 张力冉, 王栋民, 等. 微波有机合成及在混凝土减水剂制备中的应用研究进展[J]. 化工进展, 2018, 37(4): 1575-1583. |
Fang K Z, Zhang L R, Wang D M, et al. Microwave organic synthesis and its application in concrete water-reducing agent [J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1575-1583. | |
27 | 罗羽裳, 周继承, 徐文涛, 等. 微波离子交换法制备Cu-ZSM-11及微波辐照MeOx/Cu-ZSM-11催化分解NO [J]. 化工学报, 2016, 67(11): 4652-4661. |
Luo Y S, Zhou J C, Xu W T, et al. Cu-ZSM-11 catalysts prepared with microwave irradiation ion-exchange method and direct decomposition of NO over MeOx/Cu-ZSM-11 with microwave irradiation [J]. CIESC Journal, 2016, 67(11): 4652-4661. | |
28 | 张畅, 秦玉才, 高雄厚, 等. Ce改性对Y型分子筛酸性及其催化转化性能的调变机制[J]. 物理化学学报, 2015, 31(2): 344-352. |
Zhang C, Qin Y C, Gao X H, et al. Modulation of the acidity and catalytic conversion properties of Y zeolites modified by cerium cations [J]. Acta Physico-Chimica Sinica, 2015, 31(2): 344-352. | |
29 | 于善青, 田辉平, 朱玉霞, 等. 稀土离子调变Y型分子筛结构稳定性和酸性的机制[J]. 物理化学学报, 2011, 27(11): 2528-2534. |
Yu S Q, Tian H P, Zhu Y X, et al. Mechanism of rare earth cations on the stability and acidity of Y zeolites [J]. Acta Physico-Chimica Sinica, 2011, 27(11): 2528-2534. | |
30 | Qiu L M, Fu Y, Zheng J Y, et al. Investigation on the cation location, structure and performances of rare earth-exchanged Y zeolite [J]. Journal of Rare Earths, 2017, 35(7): 658-666. |
[1] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[2] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[3] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[4] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[5] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[6] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[7] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[8] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[9] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[10] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[11] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[12] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[13] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[14] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[15] | Chen WANG, Xiufeng SHI, Xianfeng WU, Fangjia WEI, Haohong ZHANG, Yin CHE, Xu WU. Preparation of Mn3O4 catalyst by redox method and study on its catalytic oxidation performance and mechanism of toluene [J]. CIESC Journal, 2023, 74(6): 2447-2457. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||