CIESC Journal ›› 2020, Vol. 71 ›› Issue (9): 4131-4140.DOI: 10.11949/0438-1157.20200547
• Reviews and monographs • Previous Articles Next Articles
Kening SUN(),Qian CHEN,Mingming NIE,Ruijun HOU()
Received:
2020-05-09
Revised:
2020-07-12
Online:
2020-09-05
Published:
2020-09-05
Contact:
Ruijun HOU
通讯作者:
侯瑞君
作者简介:
孙克宁(1964—),男,博士,教授,基金资助:
CLC Number:
Kening SUN, Qian CHEN, Mingming NIE, Ruijun HOU. Progress in the sulfur resistance of reforming catalysts[J]. CIESC Journal, 2020, 71(9): 4131-4140.
孙克宁, 陈谦, 聂明明, 侯瑞君. 重整催化剂的抗硫性能研究进展[J]. 化工学报, 2020, 71(9): 4131-4140.
金属 | 吸附能/eV | |
---|---|---|
H2S | S | |
Ni | -0.95 | -5.62 |
Ni-Cu | -0.94 | -5.68 |
Ni-Ag | -0.57 | -5.04 |
Ni-Au | -0.75 | -4.63 |
Ni-Rh | -1.03 | -5.38 |
Ni-Pd | -0.88 | -5.30 |
Ni-Pt | -0.82 | -4.98 |
Table 1 Adsorption energies of H2S, S on the Ni and M/Ni surfaces
金属 | 吸附能/eV | |
---|---|---|
H2S | S | |
Ni | -0.95 | -5.62 |
Ni-Cu | -0.94 | -5.68 |
Ni-Ag | -0.57 | -5.04 |
Ni-Au | -0.75 | -4.63 |
Ni-Rh | -1.03 | -5.38 |
Ni-Pd | -0.88 | -5.30 |
Ni-Pt | -0.82 | -4.98 |
44 | Palm C, Cremer P, Peters R, et al. Small-scale testing of a precious metal catalyst in the autothermal reforming of various hydrocarbon feeds[J]. J. Power Sources, 2002, 106(1/2): 231-237. |
45 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 车用汽油(V): GB 17930—2013[S]. 北京: 中国标准出版社, 2013. |
General Administration of Quality Supervision, Inspection and Quarantine of the Peoples Republic of China, Standardization Administration of the Peoples Republic of China. Information and documentation—gasoline for motor vehicles(V): GB 17930—2013[S]. Beijing: Standards Press of China, 2013. | |
46 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 车用柴油(V): GB 19147—2013[S]. 北京: 中国标准出版社, 2013. |
General Administration of Quality Supervision, Inspection and Quarantine of the Peoples Republic of China, Standardization Administration of the Peoples Republic of China. Information and documentation—automobile diesel fuels(V): GB 19147—2013[S]. Beijing: Standards Press of China, 2013. | |
47 | Jiménez-González C, Boukha Z, de Rivas B, et al. Behaviour of nickel-alumina spinel (NiAl2O4) catalysts for isooctane steam reforming[J]. Int. J. Hydrogen Energy, 2015, 40(15): 5281-5288. |
48 | Wu G, Zhang C, Li S, et al. Hydrogen production via glycerol steam reforming over Ni/Al2O3: influence of nickel precursors[J]. ACS Sustain. Chem. Eng., 2013, 1(8): 1052–1062. |
49 | Simson A, Farrauto R, Castaldi M. Steam reforming of ethanol/gasoline mixtures, deactivation, regeneration and stable performance[J]. Appl. Catal. B Environ., 2011, 106(3/4): 295-303. |
50 | Xie C, Chen Y, Li Y, et al. Influence of sulfur on the carbon deposition in steam reforming of liquid hydrocarbons over CeO2-Al2O3 supported Ni and Rh catalysts[J]. Appl. Catal. A: Gen., 2011, 394(1/2): 32-40. |
51 | Cheekatamarla P K, Thomson W J. Catalytic activity of molybdenum carbide for hydrogen generation via diesel reforming[J]. J. Power Sources, 2006, 158(1): 477-484. |
52 | Chao X, Chen Y S, Li Y, et al. Influence of sulfur on the carbon deposition in steam reforming of liquid hydrocarbons over CeO2-Al2O3 supported Ni and Rh catalysts [J]. Appl. Catal. A: Gen., 2011, 394: 32-40. |
1 | 孙道安, 李春迎, 张伟, 等. 典型碳氢化合物水蒸气重整制氢研究进展[J]. 化工进展, 2012, 31(4): 801-806. |
Sun D A, Li C Y, Zhang W, et al. Progress in hydrogen production from the steam reforming of typical hydrocarbons[J]. Chemical Industry and Engineering Progress, 2012, 31(4): 801-806. | |
53 | Suzuki T, Iwanami H I, Yoshinari T. Steam reforming of kerosene on Ru/Al2O3 catalyst to yield hydrogen[J]. Int. J. Hydrogen Energy, 2000, 25: 119-126. |
54 | Yoon S, Bae J, Lee S, et al. A diesel fuel processor for stable operation of solid oxide fuel cells system(Ⅱ): Integrated diesel fuel processor for the operation of solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2012, 37(11): 9228-9236. |
2 | 孙道安, 李春迎, 张伟, 等. 烃类水蒸汽重整制氢研究进展[J]. 工业催化, 2011, 19(12): 21-26. |
Sun D A, Li C Y, Zhang W, et al. Progress in hydrogen production from steam reforming of hydrocarbons[J]. Industrial Catalysis, 2011, 19(12): 21-26. | |
3 | 吴涛涛, 张会生. 重整制氢技术及其研究进展[J]. 能源技术, 2006, 27(4): 161-167. |
Wu T T, Zhang H S. The reforming technology to produce hydrogen and its research development[J]. Energy Technology, 2006, 27(4): 161-167. | |
4 | 陈亚中. 镍催化剂上烃类燃料重整制氢新工艺过程的研究[D]. 大连: 中国科学院研究生院(大连化学物理研究所), 2006. |
Chen Y Z. Studies on novel process for efficient hydrogen production from hydrocarbon fuels over nickel-based reforming catalysts[D]. Dalian: Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 2006. | |
5 | 万会军. 甲烷水蒸气重整制合成气新型催化剂的制备及性能研究[D]. 北京: 北京化工大学, 2007. |
Wan H J. Preparation and catalytic performance of novel catalysts for steam reforming of methane[D]. Beijing: Beijing University of Chemical Technology, 2007. | |
6 | 方修忠. 高效抗积碳Ni基甲烷重整制氢催化剂的制备和性能研究[D]. 南昌: 南昌大学, 2016. |
Fang X Z. The preparation of highly active and coke resistant Ni-based catalysts for methane reforming for hydrogen production[D]. Nanchang: Nanchang University, 2016. | |
7 | Reed J, Chen R, Dudfield C, et al. A multi-function compact micro-channel reactor coated with sulphur tolerant catalyst for LPG steam reforming[J]. Fuel Cells, 2015, 15(3): 516-522. |
8 | Vahc Z Y, Jung C Y, Yi S C. Performance degradation of solid oxide fuel cells due to sulfur poisoning of the electrochemical reaction and internal reforming reaction[J]. Int. J. Hydrogen Energy, 2014, 39: 17275–17283. |
9 | Acha E, van Delft Y C, Cambra J F, et al. Thin PdCu membrane for hydrogen purification from in-situ produced methane reforming complex mixtures containing H2S[J]. Chem. Eng. Sci., 2018, 176: 429-438. |
10 | Cristina D, María T I, Francisco G L, et al. Effect of H2S on the behavior of an impregnated NiO-based oxygen-carrier for chemical-looping combustion (CLC) [J]. Appl. Catal. B: Environ., 2012, 126: 186-199. |
11 | Tze Y Y, Janjam A, Sibudjing K. Recent developments in sulphur-resilient catalytic systems for syngas production [J]. Renewable and Sustainable Energy Reviews, 2019, 100: 52-70. |
12 | Whitney S J, Stephanie M V, Anthony M D. A comparison of H2S, SO2, and COS poisoning on Ni/YSZ and Ni/K2O-CaAl2O4 during methane steam and dry reforming [J]. Appl. Catal. A-Gen., 2015, 502: 399-409. |
13 | Gabriella G, Alvaro R P, Elisabetta F, et al. A study of the deactivation of low loading Ni/Al2O3 steam reforming catalyst by tetrahydrothiophene [J]. Catalysis Communications, 2013, 38: 67-73. |
14 | Gillan C, Fowles M, French S, et al. Ethane steam reforming over a platinum/alumina catalyst: effect of sulfur poisoning [J]. Ind. Eng. Chem. Res., 2013, 52(37): 13350-13356. |
15 | Matthew D K, Kerry M D, Michael J J. Alkane reforming on partially sulfided CeO2 (111) surfaces [J]. Journal of Catalysis, 2015, 330: 167-176. |
16 | Chen Y L, Chao X, Yan L, et al. Sulfur poisoning mechanism of steam reforming catalysts: an X-ray absorption near edge structure (XANES) spectroscopic study[J]. PCCP, 2010, 12: 5702-5711. |
17 | Hou K, Hughes R. The kinetics of methane steam reforming over a Ni/α-Al2O catalyst [J]. Chemical Engineering Journal, 2001, 82: 311-328. |
18 | Yoon Y, Kim H, Lee J. Enhanced catalytic behavior of Ni alloys in steam methane reforming [J]. Journal of Power Sources, 2017, 359: 450-457. |
19 | 陈曦. 镍基催化剂制备及在甲烷水蒸气重整反应中的应用[D]. 大连: 大连理工大学, 2014. |
Chen X. Preparation of Ni-based catalysts and application in steam reforming of methane[D]. Dalian: Dalian University of Technology, 2014 | |
20 | Fumihiro W, Ikuko K, Naohiro S, et al. Sulfur tolerance of noble metal catalysts for steam methane reforming [J]. Journal of the Japan Petroleum Institute, 2017, 60(3): 137-145. |
21 | Kantserova M R, Orlyk S M, Vasylyev O D. Catalytic activity and resistance to sulfur poisoning of nickel-containing composites based on stabilized zirconia in tri-reforming of methane[J]. Theor. Exp. Chem., 2018, 53: 387-394. |
22 | Sapountzi F M, Zhao C, Boréave A, et al. Sulphur tolerance of Au-modified Ni/GDC during catalytic methane steam reforming [J]. Catal. Sci. Technol., 2018, 8: 1578-1588. |
23 | Fang X Z, Zhang X H, Guo Y, et al. Highly active and stable Ni/Y2Zr2O7 catalysts for methane steam reforming: on the nature and effective preparation method of the pyrochlore support [J]. Int. J. Hydrogen Energy, 2016, 41: 11141-11153. |
24 | Postole G, Bosselet F, Bergeret G, et al. On the promoting effect of H2S on the catalytic H2 production over Gd-doped ceria from CH4/H2O mixtures for solid oxide fuel cell applications [J]. Journal of Catalysis, 2014, 316: 149-163. |
25 | Tsodikov M V, Kurdymov S S, Konstantionv G I, et al. Core-shell bifunctional catalyst for steam methane reforming resistant to H2S: activity and structure evolution [J]. Int. J. Hydrogen Energy, 2015, 40(7): 2963-2970. |
26 | Mojdeh A, Christoph P, Tobias P, et al. Experimental study of model biogas catalytic steam reforming(2): Impact of sulfur on the deactivation and regeneration of Ni-based catalysts [J]. Energy & Fuels, 2008, 22: 4190–4195. |
27 | 张钰. 正丁烷和液化石油气水蒸气重整催化剂的研制[D]. 大连: 大连理工大学, 2001. |
Zhang Y. Preparation of catalysts for steam reforming of LPG and n-butane[D]. Dalian: Dalian University of Technology, 2001. | |
28 | 张钰, 徐绍平, 韩壮, 等. 轻油水蒸气转化制城市煤气催化剂研究[J]. 煤炭转化, 2000, 23(2): 23-28. |
Zhang Y, Xu S P, Han Z. Review of catalysts for steam reforming if naphtha to city gas[J]. Coal Conversion, 2000, 23(2): 23-28. | |
29 | 刘洪梅, 蒋淇忠, 马紫峰. 丙烷二氧化碳重整制氢的研究进展[J]. 天然气化工, 2005, 30: 61-64. |
Liu H M, Jiang Q Z, Ma Z F. Research process of hydrogen production from carbon dioxide reforming of propane[J]. Natural Gas Chemical Industry, 2005, 30: 61-64. | |
30 | Barison S, Fabrizio M, Mortalò C, et al. Novel Ru/La0.75Sr0.25Cr0.5Mn0.5O3-δ catalysts for propane reforming in IT-SOFCs [J]. Solid State Ionics, 2010, 181(5/6/7): 285-291. |
31 | Nagaoka K, Sato K, Yu L. Rh/Ce0.25Zr0.75O2 catalyst for steam reforming of propane at low temperature [J]. ChemCatChem, 2019, 11: 1472-1479. |
32 | Lee K, Lee E, Song C, et al. Density functional theory study of propane steam reforming on Rh-Ni bimetallic surface: sulfur tolerance and scaling/Bronsted-Evans-Polanyi relations [J]. Journal of Catalysis, 2014, 309: 248-259. |
33 | Rangan M, Yung M M, Medlin J W. NiW and NiRu bimetallic catalysts for ethylene steam reforming: alternative mechanisms for sulfur resistance[J]. Catalysis Letters, 2012, 142(6): 718-727. |
34 | Peucheret S, Feaviour M, Stan G. Exhaust-gas reforming using precious metal catalysts [J]. Appl. Catal. B: Environ., 2006, 65(3/4): 201-206. |
35 | Wang P, Thompson L. Effect of sulfur on Mo2C-supported liquefied petroleum gas steam reforming catalysts[C]// The 2008 AIChE Annual Meeting. Catalysis and Reaction Engineering Division. Philadelphia: American Institute of Chemical Engineers, 2008: 237-238. |
36 | Sebastian J J S, Riesz C H. Sulfur-resistant catalysts for reforming propane-methods for rating catalytic activity and sulfur resistance [J]. Industrial and Engineering Chemistry, 1951, 43(4): 860-866. |
37 | Lo F M, Modafferi V, Frontera P, et al. Catalytic behavior of Ni-modified perovskite and doped ceria composite catalyst for the conversion of odorized propane to syngas [J]. Fuel Processing Technology, 2013, 113: 28-33. |
38 | Sengodan S, Lan R, Humphreys J, et al. Advances in reforming and partial oxidation of hydrocarbons for hydrogen production and fuel cell applications[J]. Renew. Sustain. Energy Rev., 2018, 82: 761–780. |
39 | Abatzoglou N, Fauteux-Lefebvre C. Review of catalytic syngas production through steam or dry reforming and partial oxidation of studied liquid compounds[J]. Wiley Interdiscip. Rev. Energy Environ., 2016, 5(2): 169-187. |
40 | Bae J, Lee S, Kim S, et al. Liquid fuel processing for hydrogen production: a review[J]. Int. J. Hydrogen Energy, 2016, 41(44): 19990–20022. |
41 | Haji S, Zhang Y, Erkey C. Atmospheric hydridesulfurization of diesel fuel using Pt/Al2O3 catalysts prepared by supercritical deposition for fuel cell applications[J]. Appl. Catal. A-Gen., 2010, 374(1/2): 1-10. |
42 | Song C. Fuel processing for low-temperature and high-temperature fuel cells: challenges, and opportunities for sustainable development in the 21st century[J]. Catalysis Today, 2002, 77(1/2): 17-49. |
43 | Mohtadi R, Lee W K, Cowan S, et al. Effects of hydrogen sulfide on the performance of a PEMFC[J]. Electrochemical and Solid State Letters, 2003, 6(12): 272-274. |
55 | Chao X, Chen Y S, Engelhard M H, et al. Comparative study on the sulfur tolerance and carbon resistance of supported noble metal catalysts in steam reforming of liquid hydrocarbon fuel[J]. ACS Catal., 2012, 2(6): 1127-1137. |
56 | Lakhapatri S L, Abraham M A. Deactivation due to sulfur poisoning and carbon deposition on Rh-Ni/Al2O3 catalyst during steam reforming of sulfur-doped n-hexadecane[J]. Appl. Catal. A: Gen., 2009, 64(1/2): 113-121. |
57 | Younis M N, Malaibari Z O, Ahmad W, et al. Hydrogen production through steam reforming of diesel over highly efficient promoted Ni/γ-Al2O3 catalysts containing lanthanide series (La, Ce, Eu, Pr, and Gd) promoters[J]. Energy Fuel, 2018, 32(6): 7054-7065. |
58 | Tribalis A, Panagiotou G D, Bourikas K, et al. Ni catalysts supported on modified alumina for diesel steam reforming[J]. Catalysts, 2016, 6(1): 11. |
59 | Wang L S, Murata K, Matsumura Y, et al. Lower-temperature catalytic performance of bimetallic Ni-Re/Al2O3 catalyst for gasoline reforming to produce hydrogen with the inhibition of methane formation[J]. Energy Fuel, 2006, 20(4): 1377-1381. |
60 | James J S, Zheng J, Song C S. Low-temperature steam reforming of jet fuel in the absence and presence of sulfur over Rh and Rh–Ni catalysts for fuel cells [J]. Journal of Catalysis, 2006, 238: 309-320. |
61 | Wang L, Murata K, Inaba M. Highly efficient conversion of gasoline into hydrogen on Al2O3-supported Ni-based catalysts: catalyst stability enhancement by modification with W[J]. Appl. Catal. A: Gen., 2009, 358: 264-268. |
62 | Hwanga B, Kwona H, Ko J, et al. Density functional theory study for the enhanced sulfur tolerance of Ni catalysts by surface alloying [J]. Applied Surface Science, 2018, 429: 87-94. |
63 | 薛青松. 抗硫中毒汽油/柴油重整制氢Pt催化剂的制备、表征和性能研究[D]. 上海: 华东师范大学, 2009. |
Xue Q S. Preparation, characterization and performance of sulfur-tolerant Pt-based catalysts for reforming of gasoline/diesel-fuel to produce hydrogen[D]. Shanghai: East China Normal University, 2009. | |
64 | Vita A, Italiano C, Pino L, et al. Hydrogen-rich gas production by steam reforming of n-dodecane(Ⅱ): Stability, regenerability and sulfur poisoning of low loading Rh-based catalyst[J]. Appl. Cata. B-Environ., 2017, 218: 317-326. |
65 | Chao X, Chen Y S, Li Y, et al. Sulfur poisoning of CeO2-Al2O3-supported mono- and bi-metallic Ni and Rh catalysts in steam reforming of liquid hydrocarbons at low and high temperatures [J]. Appl. Catal. A: Gen., 2010, 390: 210-218. |
66 | Magali F, Jennifer M, Theodore K. Effect of temperature, steam-to-carbon ratio, and alkali metal additives on improving the sulfur tolerance of a Rh/La–Al2O3 catalyst reforming gasoline for fuel cell applications [J]. Appl. Catal. A: Gen., 2008, 342(1/2): 69-77. |
67 | Yang X. An experimental investigation on the deactivation and regeneration of a steam reforming catalyst [J]. Renewable Energy, 2017, 112: 17-24. |
68 | Andersson K J, Skov-Skjoth R M, Hojlund N P E. Industrial-scale gas conditioning including Topsoe tar reforming and purification downstream biomass gasifiers: an overview and recent examples [J]. Fule, 2017, 203: 1026-1030. |
69 | Zheng Q, Janke C, Farrauto R. Steam reforming of sulfur-containing dodecane on a Rh-Pt catalyst: influence of process parameters on catalyst stability and coke structure [J]. Appl. Catal. B: Environ., 2014, 160/161: 525-533. |
70 | Iranshahi D, Hamedi N, Nategh M, et al. Thermal integration of sulfuric acid and continuous catalyst regeneration of naphtha reforming plants [J]. Chem. Eng. Technol., 2018, 41: 637-655. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[3] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[4] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[5] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[6] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[7] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[8] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[9] | Xiaoyang LIU, Jianliang YU, Yujie HOU, Xingqing YAN, Zhenhua ZHANG, Xianshu LYU. Effect of spiral microchannel on detonation propagation of hydrogen-doped methane [J]. CIESC Journal, 2023, 74(7): 3139-3148. |
[10] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[11] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
[12] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
[13] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[14] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[15] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 732
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||