CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4395-4408.DOI: 10.11949/0438-1157.20200633
• Reviews and monographs • Previous Articles Next Articles
Le ZHOU1,2,3(),Binqi WANG3,Yi NIE1,2,3,4()
Received:
2020-05-25
Revised:
2020-08-27
Online:
2020-10-05
Published:
2020-10-05
Contact:
Yi NIE
通讯作者:
聂毅
作者简介:
周乐(1997—),男,博士研究生,基金资助:
CLC Number:
Le ZHOU, Binqi WANG, Yi NIE. Research status and development trend of artificial antibacterial fibers[J]. CIESC Journal, 2020, 71(10): 4395-4408.
周乐, 王斌琦, 聂毅. 人工抗菌纤维的研究现状和发展趋势[J]. 化工学报, 2020, 71(10): 4395-4408.
Add to citation manager EndNote|Ris|BibTeX
12 | Hari Prakash N, Sarma A, Sarma B. Antibacterial studies of copper deposited water hyacinth fiber using RF plasma sputtering process[J]. Materials Technology, 2018, 33(9): 621-633. |
13 | Jiao Y, Wan C, Zhang W, et al. Carbon fibers encapsulated with nano-copper: a coreshell structured composite for antibacterial and electromagnetic interference shielding applications[J]. Nanomaterials (Basel), 2019, 9: 460. |
14 | Shariatinia Z, Shekarriz S, Mirhosseini Mousavi H S, et al. Disperse dyeing and antibacterial properties of nylon and wool fibers using two novel nanosized copper(Ⅱ) complexes bearing phosphoramide ligands[J]. Arabian Journal of Chemistry, 2017, 10(7): 944-955. |
15 | Wang Y, Wang W, Liu B, et al. Preparation of durable antibacterial and electrically conductive polyacrylonitrile fibers by copper sulfide coating[J]. Journal of Applied Polymer Science, 2017, 134(44): 45496. |
16 | 李会改, 万明, 王梅珍, 等. 银系抗菌纤维的研究现状[J]. 合成纤维, 2014, 43(7): 29-32. |
Li H G, Wan M, Wang M Z, et al. Research status of silver antibacterial fibers[J]. Synthetic Fiber, 2014, 43(7): 29-32. | |
17 | Benli B, Yalın C. The influence of silver and copper ions on the antibacterial activity and local electrical properties of single sepiolite fiber: a conductive atomic force microscopy (C-AFM) study[J]. Applied Clay Science, 2017, 146: 449-456. |
18 | Chen G, Yan L, Wan X, et al. In Situ synthesis of silver nanoparticles on cellulose fibers using D-glucuronic acid and its antibacterial application[J]. Materials (Basel), 2019, 12: 3101. |
19 | Kwak H W, Kim J E, Lee K H. Green fabrication of antibacterial gelatin fiber for biomedical application[J]. Reactive and Functional Polymers, 2019, 136: 86-94. |
20 | Smiechowicz E, Niekraszewicz B, Kulpinski P, et al. Antibacterial composite cellulose fibers modified with silver nanoparticles and nanosilica[J]. Cellulose, 2018, 25(6): 3499-3517. |
21 | Zhang Y, Chen H, Sun H, et al. Silver-doped carbon fibers at low loading capacity that display high antibacterial properties[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(5): 1628-1637. |
22 | Xu S, Zhang F, Yao L, et al. Eco-friendly fabrication of antibacterial cotton fibers by the cooperative self-assembly of hyperbranched poly(amidoamine)- and hyperbranched poly(amine-ester)-functionalized silver nanoparticles[J]. Cellulose, 2017, 24(3): 1493-1509. |
1 | 李彦, 施浩浩, 谭玉静, 等. 抗菌纤维及其应用[J]. 中国纤检, 2012, (11): 80-83. |
Li Y, Shi H H, Tan Y J, et al. Antibacterial fiber and its application[J]. China Fiber Inspection, 2012, (11): 80-83. | |
2 | 王建刚, 严涛海. 纺织品抗菌整理研究的现状与发展[J]. 山东纺织科技, 2012, 53(3): 42-45. |
Wang J G, Yan T H. The present situation and development of textile antibacterial finishing research[J]. Shandong Textile Technology, 2012, 53(3): 42-45. | |
3 | 张毅, 高园园. 人工抗菌纤维研究及应用[J]. 天津纺织科技, 2017, (6): 22-25. |
Zhang Y, Gao Y Y. Study and application of artificial antibacterial fibers[J]. Tianjin Textile Technology, 2017, (6): 22-25. | |
4 | Zhu X, Hou X, Ma B, et al. Chitosan/gallnut tannins composite fiber with improved tensile, antibacterial and fluorescence properties[J]. Carbohydr. Polym., 2019, 226: 115311. |
5 | Cassano R, Trombino S, Ferrarelli T, et al. Hemp fiber (Cannabis sativa L.) derivatives with antibacterial and chelating properties[J]. Cellulose, 2013, 20(1): 547-557. |
6 | Tayyar A E, D.TetİK G, Abak E. Evaluation of antibacterial, mechanical, and comfort properties of woven fabrics consist of cotton, bamboo, and silver fibers[J]. Tekstİl Ve Konfeksİyon, 2018, 28(4). |
7 | Gao D, Li Y, Lyu B, et al. Silicone quaternary ammonium salt based nanocomposite: a long-acting antibacterial cotton fabric finishing agent with good softness and air permeability[J]. Cellulose, 2019, 27(2): 1055-1069. |
8 | Osama Bshena T D H, Leon M T D, Bert K. Antimicrobial fibers: therapeutic possibilities and recent advances[J]. Future Med. Chem., 2011, 3(14): 1821-1847. |
23 | Khude P, Majumdar A, Butola B S. Leveraging the antibacterial properties of knitted fabrics by admixture of polyester-silver nanocomposite fibres[J]. Fibers and Polymers, 2018, 19(7): 1403-1410. |
24 | Matsunaga T, Tomoda R, Nakajima T, et al. Photoelectrochemical sterilization of microbial cells by semiconductor powders [J]. FEMS Microbiology Letters, 1985, 29(1/2): 211-214. |
9 | 陈仕国, 郭玉娟, 陈少军, 等. 纺织品抗菌整理剂研究进展[J]. 材料导报, 2012, 26(7): 89-94. |
Chen S G, Guo Y J, Chen S J, et al. Progress in antibacterial finishing agents for textiles[J]. Material Review, 2012, 26(7): 89-94. | |
25 | Deng Y, Li Z, Tang R, et al. What will happen when microorganisms “meet” photocatalysts and photocatalysis?[J]. Environmental Science: Nano, 2020, 7(3): 702-723. |
26 | Wen J, Li Q, Li H, et al. Nano-TiO2 imparts amidoximated wool fibers with good antibacterial activity and adsorption capacity for uranium(Ⅵ) recovery[J]. Industrial & Engineering Chemistry Research, 2018, 57(6): 1826-1833. |
10 | 莫月香, 罗峻, 杨欣卉. 纺织品抗菌整理剂及其检测研究进展[J]. 广东化工, 2018, 45(11): 150-151. |
Mo Y X, Luo J, Yang X H. Research progress of antibacterial finishing agents and their detection for textiles[J]. Guangdong Chemical, 2018, 45(11): 150-151. | |
27 | Jingjit P, Srisawat N. Spinning of photocatalytic fiber as splittable segmented-pie bi-component fibers for antibacterial textiles[J]. J. Nanosci. Nanotechnol., 2019, 19(3): 1554-1561. |
28 | Jaksik J, Tran P, Galvez V, et al. Advanced cotton fibers exhibit efficient photocatalytic self-cleaning and antimicrobial activity[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 365: 77-85. |
29 | Tan L Y, Sin L T, Bee S T, et al. A review of antimicrobial fabric containing nanostructures metal-based compound[J]. Journal of Vinyl and Additive Technology, 2019, 25(S1): E3-E27. |
30 | Malis D, Jersek B, Tomsic B, et al. Antibacterial activity and biodegradation of cellulose fiber blends with incorporated ZnO[J]. Materials (Basel), 2019, 12: 20. |
11 | 张海涛, 张雪, 刘蒙蒙, 等. 天然抗菌纺织品的发展现状[J]. 纺织科技进展, 2020, (3): 8-11. |
Zhang H T, Zhang X, Liu M M, et al. Development status of natural antibacterial textiles[J]. Advances in Textile Technology, 2020, (3): 8-11. | |
31 | Popescu M C, Ungureanu C, Buse E, et al. Antibacterial efficiency of cellulose-based fibers covered with ZnO and Al2O3 by atomic layer deposition[J]. Applied Surface Science, 2019, 481: 1287-1298. |
32 | Gopinath A, Krishna K. Dual role of chemically functionalized activated carbon fibres: investigation of parameters influencing the degradation of organophosphorus compounds and antibacterial behaviour[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(2): 611-617. |
33 | Salgueiro A M, Santos M D, Saraiva J A, et al. Ultra-high pressure modified cellulosic fibres with antimicrobial properties[J]. Carbohydr. Polym., 2017, 175: 303-310. |
34 | Borda d' Água R, Branquinho R, Duarte M P, et al. Efficient coverage of ZnO nanoparticles on cotton fibres for antibacterial finishing using a rapid and low cost in situ synthesis[J]. New Journal of Chemistry, 2018, 42(2): 1052-1060. |
35 | Bhutiya P L, Misra N, Abdul Rasheed M, et al. Nested seaweed cellulose fiber deposited with cuprous oxide nanorods for antimicrobial activity[J]. Int. J. Biol. Macromol., 2018, 117: 435-444. |
36 | Zhou J, Fei X, Li C, et al. Integrating nano-Cu2O@ZrP into in situ polymerized polyethylene terephthalate (pet) fibers with enhanced mechanical properties and antibacterial activities[J]. Polymers (Basel), 2019, 11: 1. |
37 | Ibrahim M M, Mezni A, El-Sheshtawy H S, et al. Direct z-scheme of Cu2O/TiO2 enhanced self-cleaning, antibacterial activity, and UV protection of cotton fiber under sunlight[J]. Applied Surface Science, 2019, 479: 953-962. |
38 | 周静茹, 裴丽霞, 张立志. 改性活性炭负载高分子季铵盐的杀菌性能[J]. 化工学报, 2012, 63(1): 286-291. |
Zhou J R, Pei L X, Zhang L Z. Bactericidal properties of polymer quaternary ammonium salt supported on modified activated carbon[J]. CIESC Journal, 2012, 63(1): 286-291. | |
39 | Ates B, Cerkez I. Dual antibacterial functional regenerated cellulose fibers[J]. Journal of Applied Polymer Science, 2017, 134(21): 44872. |
40 | Lee S, Lee J. Antibacterial coating of glass fiber filters with silver nanoparticles (agnps) and glycidyltrimethylammonium chloride (GTAC)[J]. Fibers and Polymers, 2018, 19(10): 2080-2087. |
41 | Zhang B, Jiang Y. Durable antibacterial and hydrophobic polyester fibres and wearable textiles[J]. Micro & Nano Letters, 2018, 13(7): 1011-1016. |
42 | 靳亚楠. 甜菜碱型氯胺抗菌剂的合成及其应用[D]. 大连: 大连理工大学, 2019. |
Jin Y N. Synthesis and application of betaine chloramine antibacterial agent[D]. Dalian: Dalian University of Technology, 2019. | |
43 | Chang L, Wang J, Tong C, et al. Comparison of antimicrobial activities of polyacrylonitrile fibers modified with quaternary phosphonium salts having different alkyl chain lengths[J]. Journal of Applied Polymer Science, 2016, 133(29): 43689. |
44 | 孙雪飞, 高勇强, 赵颂, 等. 胍基聚合物接枝改性制备抗菌抗污染超滤膜[J]. 化工学报, 2018, 69(11): 4869-4878. |
Ren X F, Gao Y Q, Zhao S, et al. Preparation of antibacterial ultrafiltration membrane by grafting modification of guanidine polymer[J]. CIESC Journal, 2018, 69(11): 4869-4878. | |
45 | Cao C, Wu K, Yuan W, et al. Synthesis of non-water soluble polymeric guanidine derivatives and application in preparation of antimicrobial regenerated cellulose[J]. Fibers and Polymers, 2017, 18(6): 1040-1047. |
46 | Cai Q, Yang S, Zhang C, et al. Facile and versatile modification of cotton fibers for persistent antibacterial activity and enhanced hygroscopicity[J]. ACS Appl. Mater. Interfaces, 2018, 10(44): 38506-38516. |
47 | 韩瑞涛, 赵磊, 唐二军, 等. ATRP法接枝卤胺分子制备纤维素共聚物抗菌材料[J]. 化工学报, 2018, 69: 155-160. |
Han R T, Zhao L, Tang E J, et al. The antibacterial materials of cellulose copolymers were prepared by grafting halide amine with ATRP method[J]. CIESC Journal, 2018, 69: 155-160. | |
48 | Jie Z, Zhang B, Zhao L, et al. Regenerable antimicrobial silica gel with quaternarized N-halamine[J]. Journal of Materials Science, 2014, 49(9): 3391-3399. |
49 | Chen S G, Chen S J, Jiang S, et al. Study of zwitterionic sulfopropylbetaine containing reactive siloxanes for application in antibacterial materials[J]. Colloids and Surfaces B-Biointerfaces, 2011, 85(2): 323-329. |
50 | Chen S G, Yuan L J, Li Q Q, et al. Durable antibacterial and nonfouling cotton textiles with enhanced comfort via zwitterionic sulfopropylbetaine coating[J]. Small, 2016, 12(26): 3516-3521. |
51 | Chen S G, Chen S J, Jiang S, et al. Environmentally friendly antibacterial cotton textiles finished with siloxane sulfopropylbetaine[J]. ACS Applied Materials & Interfaces, 2011, 3(4): 1154-1162. |
52 | Zhang S B, Yang X H, Tang B, et al. New insights into synergistic antimicrobial and antifouling cotton fabrics via dually finished with quaternary ammonium salt and zwitterionic sulfobetaine[J]. Chemical Engineering Journal, 2018, 336: 123-132. |
53 | Zeng M, Xu J, Luo Q, et al. Constructing antibacterial polymer nanocapsules based on pyridine quaternary ammonium salt[J]. Mater. Sci. Eng. C Mater. Biol. Appl., 2020, 108: 110383. |
54 | Li L, Jia D, Wang H, et al. Synthesis of sulfonium N-chloramines for antibacterial applications[J]. New Journal of Chemistry, 2020, 44(2): 303-307. |
55 | Zhou Y, Tang R C. Natural flavonoid-functionalized silk fiber presenting antibacterial, antioxidant, and UV protection performance[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10518-10526. |
56 | Li Y D, Guan J P, Tang R C, et al. Application of natural flavonoids to impart antioxidant and antibacterial activities to polyamide fiber for health care applications[J]. Antioxidants (Basel), 2019, 8: 38. |
57 | Shahmoradi Ghaheh F, Mortazavi S M, Alihosseini F, et al. Assessment of antibacterial activity of wool fabrics dyed with natural dyes[J]. Journal of Cleaner Production, 2014, 72: 139-145. |
58 | Jamili F, Mirjalili M, Zamani H A. Antibacterial wood-plastic composite produced from treated and natural dyed wood fibers[J]. Polymers and Polymer Composites, 2019, 27(6): 347-355. |
59 | Khaldi Z, Ouk T S, Zerrouki R. Synthesis and antibacterial properties of thymol and carvacrol grafted onto lignocellulosic kraft fibers[J]. Journal of Bioactive and Compatible Polymers, 2018, 33(5): 558-570. |
60 | Huang T, Chen C, Li D, et al. Hydrophobic and antibacterial textile fibres prepared by covalently attaching betulin to cellulose[J]. Cellulose, 2019, 26(1): 665-677. |
61 | Liu Y R, Thomsen K, Nie Y, et al. Predictive screening of ionic liquids for dissolving cellulose and experimental verification[J]. Green Chemistry, 2016, 18(23): 6246-6254. |
62 | Zhang Z, Nie Y, Zhang Q, et al. Quantitative change in disulfide bonds and microstructure variation of regenerated wool keratin from various ionic liquids[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(3): 2614-2622. |
63 | Liu X, Nie Y, Liu Y, et al. Screening of ionic liquids for keratin dissolution by means of COSMO-RS and experimental verification[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 17314-17322. |
64 | Liu Y, Wang Y, Nie Y, et al. Preparation of MWCNTs-graphene-cellulose fiber with ionic liquids[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(24): 20013-20021. |
65 | Zhou L, Pan F, Liu Y, et al. Study on the regularity of cellulose degradation in ionic liquids[J]. Journal of Molecular Liquids, 2020, 308: 113153. |
66 | 张锁江, 刘艳荣, 聂毅. 离子液体溶解天然高分子材料及绿色纺丝技术研究综述[J]. 轻工学报, 2016, 31(2): 1-14. |
Zhang S J, Liu Y R, Nie Y. Research review of dissolving natural polymer materials with ionic liquids and green spinning technology[J]. Journal of Light Industry, 2016, 31(2): 1-14. | |
67 | 聂毅, 王均凤, 张振磊, 等. 离子液体回收循环利用的研究进展与趋势[J]. 化工进展, 2019, 38(1): 100-110. |
Nie Y, Wang J F, Zhang Z L, et al. Trends and research progresses on the recycling of ionic liquids[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 100-110. | |
68 | 王均凤, 聂毅, 王斌琦, 等. 离子液体法再生纤维素纤维制造技术及发展趋势[J]. 化工学报, 2019, 70(10): 3836-3846. |
Wang J F, Nie Y, Wang B Q, et al. Manufacturing technology and development direction on regenerated cellulose fibers using ionic liquids[J]. CIESC Journal, 2019, 70(10): 3836-3846. | |
69 | 聂毅, 周乐, 康召青, 等. 一种原液着色制备姜黄抗菌再生纤维的方法:201910877532.6[P]. 2019-09-17. |
Nie Y, Zhou L, Kang Z Q, et al. A method for preparing turmeric antibacterial regenerated fiber by coloring the original solution: 201910877532.6[P]. 2019-09-17. | |
70 | Qiao Z, Fu Y, Lei C, et al. Advances in antimicrobial peptides-based biosensing methods for detection of foodborne pathogens: a review[J]. Food Control, 2020, 112: 107116. |
71 | Liu M, Jia L, Zhao Z, et al. Fast and robust lead (Ⅱ) removal from water by bioinspired amyloid lysozyme fibrils conjugated with polyethyleneimine (PEI)[J]. Chemical Engineering Journal, 2020, 390: 124667. |
72 | Li J, Wang X, Liu X, et al. Manufacture and performance of O-carboxymethyl chitosan sodium salt/cellulose fibers in N-methylmorpholine-N-oxide system[J]. Fibers and Polymers, 2014, 15(8): 1575-1582. |
73 | Ma B, Zhang M, He C, et al. New binary ionic liquid system for the preparation of chitosan/cellulose composite fibers[J]. Carbohydrate Polymers, 2012, 88(1): 347-351. |
74 | Rahman B M A, Hossain M A, Zakaria M, et al. Chitosan coated cotton fiber: physical and antimicrobial properties for apparel use[J]. Journal of Polymers and the Environment, 2016, 25(2): 334-342. |
75 | Hu X, Ren N, Chao Y, et al. Highly aligned graphene oxide/poly(vinyl alcohol) nanocomposite fibers with high-strength, antiultraviolet and antibacterial properties[J]. Composites Part A: Applied Science and Manufacturing, 2017, 102: 297-304. |
76 | Ma Y, Bai D, Hu X, et al. Robust and antibacterial polymer/mechanically exfoliated graphene nanocomposite fibers for biomedical applications[J]. ACS Appl. Mater. Interfaces, 2018, 10(3): 3002-3010. |
77 | Zhang Y, Lu Y, Yan X, et al. Functional & enhanced graphene/polyamide 6 composite fiber constructed by a facile and universal method[J]. Composites Part A: Applied Science and Manufacturing, 2019, 123: 149-157. |
78 | Ma S, Zhang M, Nie J, et al. Multifunctional cellulose-based air filters with high loadings of metal-organic frameworks prepared by in situ growth method for gas adsorption and antibacterial applications[J]. Cellulose, 2018, 25(10): 5999-6010. |
79 | Yu Y, Chen G, Guo J, et al. Vitamin metal-organic framework-laden microfibers from microfluidics for wound healing[J]. Materials Horizons, 2018, 5(6): 1137-1142. |
[1] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[2] | WANG Shaoyu, MA Hanze, WU Hong, LIANG Xu, WANG Hongjian, ZHU Ziting, JIANG Zhongyi. Research advances of organic framework membranes in gas separation [J]. CIESC Journal, 2021, 72(7): 3488-3510. |
[3] | ZHU Dandan, XU Xiongwen, LIU Jinping, LU Jiong. Characteristic of condensation heat transfer of hybrid wettable patterned copper surfaces [J]. CIESC Journal, 2021, 72(5): 2528-2546. |
[4] | SU Yaoyao, LI Pingfan, WANG Wei, JU Xiaojie, XIE Rui, LIU Zhuang, CHU Liangyin. Controllable fabrication of functional microparticle materials from microfluidic droplet templates [J]. CIESC Journal, 2021, 72(1): 42-60. |
[5] | Yongjin CUI, Yankai LI, Kai WANG, Jian DENG, Guangsheng LUO. Recent advances of numbering-up technology of micro-dispersion devices [J]. CIESC Journal, 2020, 71(10): 4350-4364. |
[6] | Yingying LI, Qianqian DENG, Hao LIU, Qichun LIU, Zhenggui GU, Fang WANG. Microstructure characterization and thermal stability of new silk fibroin composite films [J]. CIESC Journal, 2020, 71(1): 388-396. |
[7] | Jing XIANG, Hong WANG, Xun ZHU, Yudong DING, Qiang LIAO, Rong CHEN. Fast replication method for lotus leaf and effect of micro-nanostructure on hydrophobic properties [J]. CIESC Journal, 2019, 70(9): 3545-3552. |
[8] | Yanzhao ZHAI, Anjiang CAI, Dongpeng ZHANG, Chao HAN, Li LI. Fabrication process of MEMS print head based on silicon-silicon low temperature direct bonding [J]. CIESC Journal, 2019, 70(3): 1220-1226. |
[9] | SANG Lixia, LI Feng. Study on preparation and thermal properties of carbonates composite heat storage materials [J]. CIESC Journal, 2018, 69(S1): 129-135. |
[10] | CAO Xiaochang, WANG Zhi, QIAO Zhihua, WANG Jixiao, XU Zhenliang. One-step fabrication of asymmetric membranes containing amino compound for CO2 separation [J]. CIESC Journal, 2018, 69(11): 4778-4787. |
[11] | ZHANG Ning, SHAN Guorong. Near-infrared light and temperature responsive nanocomposite hydrogel [J]. CIESC Journal, 2018, 69(11): 4862-4868. |
[12] | LIANG Miao, YU Tao, GAO Xiang, SU Rongxin, QI Wei, HE Zhimin. Fabrication of metal nanocomposites based on proteins and their self-assemblies as templates [J]. CIESC Journal, 2018, 69(11): 4553-4565. |
[13] | QIN Fangli, YUAN Yao, AI Guanya, WANG Aijun, ZHANG Hongyu. Three-dimensional ordered macro/mesoporous TiO2 inverse opal electrode with enhanced dye-sensitized solar cells' efficiency [J]. CIESC Journal, 2017, 68(7): 2925-2930. |
[14] | ZHOU Guofa, YANG Peimin, LUO Zhi, JIANG Xiannian. Numerical simulation on in-mold micro assembly molding process based on viscoelastic thermal fluid structure coupling [J]. CIESC Journal, 2017, 68(3): 1129-1137. |
[15] | HUANG Yan, ZHANG Xuelai. Heat transfer property of lauryl alcohol-capric acid-nanoparticle composite phase change materials [J]. CIESC Journal, 2016, 67(6): 2271-2276. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||