1 |
何君勇, 李路海. 喷墨打印技术进展[J]. 中国印刷与包装研究, 2009, 1(6): 54-58.
|
|
HeJ Y, LiL H. Progress and trends of ink-jet printing technology[J]. China Printing and Packaging Study, 2009, 1(6): 54-58.
|
2 |
WijshoffH. The dynamics of the piezo inkjet printhead operation[J]. Physics Reports, 2010, 491(4): 77-177.
|
3 |
ChungC K, LinC J, ChenC C, et al. Combination of thick resist and electroforming technologies for monolithic inkjet application[J]. Microsystem Technologies, 2004, 10(6): 462-466.
|
4 |
LeeJ D, YoonJ B, KimJ K, et al. A thermal inkjet printhead with a monolithically fabricated nozzle plate and self-aligned ink feed hole[J]. Journal of Microelectromechanical Systems, 1999, 8(3): 229-236.
|
5 |
JosephP J, KelleherH A, AllenS A B, et al. Improved fabrication of micro air-channels by incorporation of a structural barrier[J]. Journal of Micromechanics & Microengineering, 2004, 15(1): 35-42.
|
6 |
MetzS, JiguetS, BertschA, et al. Polyimide and SU-8 microfluidic devices manufactured by heat-depolymerizable sacrificial material technique[J]. Lab on A Chip, 2004, 4(2): 114-120.
|
7 |
温敏, 王晓东, 刘冲, 等. PMMA微流控芯片微通道热压成形与键合工艺研究[J]. 光学精密工程, 2004, 12(Z1): 272-276.
|
|
WenM, WangX D, LiuC, et al. Research on hot embossing and thermal bonding for fabrication of PMMA microfluidic chips[J]. Optics and Precision Engineering, 2004, 12(Z1): 272-276.
|
8 |
KellyR T, WoolleyA T. Thermal bonding of polymeric capillary electrophoresis microdevices in water[J]. Analytical Chemistry, 2003, 75(8): 1941-1945.
|
9 |
PanC T, ShieaJ, ShenS C. Fabrication of an integrated piezo-electric micro-nebulizer for biochemical sample analysis[J]. Journal of Micromechanics & Microengineering, 2007, 17(3): 659-669.
|
10 |
李小军. SU-8微纳米流体通道制作方法研究[D]. 合肥: 中国科学技术大学, 2012.
|
|
LiX J. Research on fabrication of SU-8 micro/nano fluidic channels[D]. Hefei: University of Science and Technology of China, 2012.
|
11 |
KimB H, LeeH S, KimS W, et al. Hydrodynamic responses of a piezoelectric driven MEMS inkjet print-head[J]. Sensors & Actuators A: Physical, 2014, 210(4): 131-140.
|
12 |
苑伟政, 乔大勇. 微机电系统(MEMS)制造技术[M]. 北京: 科学出版社, 2014: 15-19.
|
|
YuanW Z, QiaoD Y. Microelectromechanical Systems (MEMS) Manufacturing Technology[M]. Beijing: Science Press, 2014: 15-19.
|
13 |
刘昶. 微机电系统基础[M].黄庆安, 译. 2版. 北京: 机械工业出版社, 2013: 25.
|
|
LiuC. Foundations of MEMS[M]. Huang Q A, trans. 2nd ed. Beijing: China Machine Press, 2013: 25.
|
14 |
WangC X, SugaT. A novel room-temperature wafer direct bonding method by fluorine containing plasma activation[C]//2010 Proceedings 60th Electronic Components and Technology Conference. Las Vegas, NV, USA: IEEE, 2010: 303-308.
|
15 |
NieL, ShiT L, TangZ R, et al. Pressure aided low temperature direct bonding of silicon wafers with high surface roughness[C]//2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems. Zhuhai, China: IEEE, 2007: 334-338.
|
16 |
毛剑波, 易茂祥. PZT压电陶瓷极化工艺研究[J]. 压电与声光, 2006, 28(6): 736-737.
|
|
MaoJ B, YiM X. Research on the polarization technology of PZT piezoelectric ceramic[J]. Piezoelectrics & Acoustooptics, 2006, 28(6): 736-737.
|
17 |
TongQ Y, GöseleU. A model of low-temperature wafer bonding and its applications[J]. Journal of the Electrochemical Society, 1996, 143(5): 1773-1779.
|
18 |
TongQ Y, ChaG, GafiteanuR, et al. Low temperature wafer direct bonding[J]. Journal of Microelectromechanical Systems, 1994, 3(1): 29-35.
|
19 |
TongQ Y. The role of surface chemistry in bonding of standard silicon wafers[J]. Journal of the Electrochemical Society, 1997, 144(1): 384.
|
20 |
TongQ Y, GanQ, FountainG, et al. Fluorine-enhanced low-temperature wafer bonding of native-oxide covered Si wafers[J]. Applied Physics Letters, 2004, 85(17): 3731-3733.
|
21 |
WangC X, SugaT. Investigation of fluorine containing plasma activation for room-temperature bonding of Si-based materials[J]. Microelectronics Reliability, 2012, 52(2): 347-351.
|
22 |
WangX G, LiY L, QiH. Low temperature Si-Si bonding process design based on plasma surface treatment[C]//2015 Asia-Pacific Microwave Conference. Nanjing, China: IEEE, 2016.
|
23 |
WangC X, LiY, LiuY N, et al. Investigation of thermal treatment processes for dissimilar wafer bonding[J]. ECS Transactions, 2017, 77(5): 143-152.
|
24 |
BengtssonS, AmirfeizP. Room temperature wafer bonding of silicon, oxidized silicon, and crystalline quartz[J]. Journal of Electronic Materials, 2000, 29(7): 909-915.
|
25 |
CrnogoracF, WongS, PeaseR F W. Semiconductor crystal islands for three-dimensional integration[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2010, 28(6): 53-58.
|
26 |
ZhaoY L, SongZ J, LiY, et al. Low temperature wafer direct bonding using wet chemical treatment[J]. Advanced Materials Research, 2012, 482/483/484: 2381-2384.
|
27 |
陈亏, 高晶, 俞建勇, 等. 低温等离子体处理及丙烯酸接枝改性膨化聚四氟乙烯薄膜[J]. 化工学报, 2011, 62(4): 1170-1176.
|
|
ChenK, GaoJ, YuJ Y, et al. Surface modification of low temperature plasma-pretreated ePTFE film by AAc graft copolymerization[J]. CIESC Journal, 2011, 62(4): 1170-1176.
|
28 |
杨春, 王树博, 谢晓峰, 等. 羟基自由基对全钒液流电池石墨毡电极的性能影响[J]. 化工学报, 2012, 63(S1): 188-193.
|
|
YangC, WangS B, XieX F, et al. Performance influence of hydroxyl radical on graphite felt electrode used in all vanadium redox flow battery[J]. CIESC Journal, 2012, 63(S1): 188-193.
|
29 |
何福林, 滕霖, 李川. 低温直接键合硅片亲水性及其键合效果评价[J]. 航空精密制造技术, 2011, 47(3): 40-43.
|
|
HeF L, TengL, LiC. Hydrophilicity and bonding effect of low temperature Si/Si direct bonding wafer[J]. Aviation Precision Manufacturing Technology, 2011, 47(3): 40-43.
|
30 |
HeJ Z, YinZ F, LiC, et al. Fabrication of chamber for piezo inkjet printhead by SU-8 photolithography technology and bonding method[J]. Microsystem Technologies, 2016, 22(4): 721-726.
|