CIESC Journal ›› 2020, Vol. 71 ›› Issue (12): 5361-5375.DOI: 10.11949/0438-1157.20200711
• Reviews and monographs • Previous Articles Next Articles
LUAN Pengqian1(),ZHOU Dandan1,WANG Xiaotian1,CHEN Ran1,GAO Shiqi1,ZHAO Hao1,HUANG Chen1,LIU Yunting1(),GAO Jing1,JIANG Yanjun1,2()
Received:
2020-06-05
Revised:
2020-07-22
Online:
2020-12-05
Published:
2020-12-05
Contact:
LIU Yunting,JIANG Yanjun
栾鹏仟1(),周丹丹1,王晓天1,陈冉1,高士耆1,赵浩1,黄琛1,刘运亭1(),高静1,姜艳军1,2()
通讯作者:
刘运亭,姜艳军
作者简介:
栾鹏仟(1995—),男,硕士研究生,基金资助:
CLC Number:
LUAN Pengqian,ZHOU Dandan,WANG Xiaotian,CHEN Ran,GAO Shiqi,ZHAO Hao,HUANG Chen,LIU Yunting,GAO Jing,JIANG Yanjun. Bridging gap between chemo- and biocatalysis: strategies and applications[J]. CIESC Journal, 2020, 71(12): 5361-5375.
栾鹏仟,周丹丹,王晓天,陈冉,高士耆,赵浩,黄琛,刘运亭,高静,姜艳军. 架起化学-酶催化之间的桥梁:构建策略及催化应用[J]. 化工学报, 2020, 71(12): 5361-5375.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 One-pot chemoenzymatic conversion through the combination of Ru catalyst and ω-transaminase[20](a), and Pd catalyst and alcohol dehydrogenase[21] (b)
Fig.2 Chemoenzymatic for the asymmetric synthesis of 1,4-diols, lactones, γ-hydroxy-carbonyl compounds[24] (a) and (benzyloxy)cycloalkanamines[25] (b) in aqueous medium
Chemical catalysts | Biocatalysts | Products | Strategy | Ref. |
---|---|---|---|---|
Ni | KRED | orphenadrine | temporal separation | [ |
Pd | PAL | biarylalanines | temporal separation | [ |
oxaziridine oxidant | MsrA | sulfoxides | biphasic system | [ |
Pd | ADH | biaryl alcohols | non-conventional media | [ |
oxovanadium | lipase | optically active esters | space separation | [ |
proline-derivative | ADH | 1,3-diol | space separation | [ |
Au | glucosidase | 4-aminophenol | space separation | [ |
Pd | CalB | benzyl hexanoate | space separation | [ |
Pd | MAO-N-D5 | (R)-MTQ | space separation | [ |
Pd | halogenase | indole heterocycle | space separation | [ |
Table 1 Examples of overcoming chemoenzymatic incompatibility
Chemical catalysts | Biocatalysts | Products | Strategy | Ref. |
---|---|---|---|---|
Ni | KRED | orphenadrine | temporal separation | [ |
Pd | PAL | biarylalanines | temporal separation | [ |
oxaziridine oxidant | MsrA | sulfoxides | biphasic system | [ |
Pd | ADH | biaryl alcohols | non-conventional media | [ |
oxovanadium | lipase | optically active esters | space separation | [ |
proline-derivative | ADH | 1,3-diol | space separation | [ |
Au | glucosidase | 4-aminophenol | space separation | [ |
Pd | CalB | benzyl hexanoate | space separation | [ |
Pd | MAO-N-D5 | (R)-MTQ | space separation | [ |
Pd | halogenase | indole heterocycle | space separation | [ |
Chiral building blocks | Pharmaceuticals | Indications | Ref. |
---|---|---|---|
Orphenadrine (邻甲苯海明) | antihistamines, muscle relaxants | [ | |
Odanacatib (奥达那卡蒂) | cathepsin C inhibitor | [ | |
Adrenergic (去肾上腺素) | anti-asthma drug | [ | |
Amphetamine (安非他命) | narcolepsy | [ | |
Propranolol (普萘洛尔) | arrhythmia | [ | |
Sertraline (舍曲林) | anti-depressant drug | [ | |
Cinacalcet (西那卡塞) | hypercalcaemia associated to parathyroid carcinoma | [ | |
Lipitor (立普妥) | cholesterol-low-ering drug | [ | |
Sitagliptin (西他列汀) | anti-diabetic drug | [ | |
Dantrolene (丹曲林) | muscle relaxant | [ |
Table 2 Chemoenzymatic catalyzed preparation of chiral drugs and intermediates
Chiral building blocks | Pharmaceuticals | Indications | Ref. |
---|---|---|---|
Orphenadrine (邻甲苯海明) | antihistamines, muscle relaxants | [ | |
Odanacatib (奥达那卡蒂) | cathepsin C inhibitor | [ | |
Adrenergic (去肾上腺素) | anti-asthma drug | [ | |
Amphetamine (安非他命) | narcolepsy | [ | |
Propranolol (普萘洛尔) | arrhythmia | [ | |
Sertraline (舍曲林) | anti-depressant drug | [ | |
Cinacalcet (西那卡塞) | hypercalcaemia associated to parathyroid carcinoma | [ | |
Lipitor (立普妥) | cholesterol-low-ering drug | [ | |
Sitagliptin (西他列汀) | anti-diabetic drug | [ | |
Dantrolene (丹曲林) | muscle relaxant | [ |
1 | Hu M Y, He Q, Fan S J, et al. Ligands with 1,10-phenanthroline scaffold for highly regioselective iron-catalyzed alkene hydrosilylation[J]. Nature Communications, 2018, 9(1): 221. |
2 | Li M L, Yu J H, Li Y H, et al. Highly enantioselective carbene insertion into N—H bonds of aliphatic amines[J]. Science, 2019, 366(6468): 990-994. |
3 | Li Y P, Li Z Q, Zhou B Y, et al. Chiral spiro phosphoric acid-catalyzed Friedel-Crafts conjugate addition/enantioselective protonation reactions[J]. ACS Catalysis, 2019, 9(7): 6522-6529. |
4 | Lohse M S, Bein T. Covalent organic frameworks: structures, synthesis, and applications[J]. Advanced Functional Materials, 2018, 28(33): 1705553. |
5 | Jiao L, Wang Y, Jiang H L, et al. Metal-organic frameworks as platforms for catalytic applications[J]. Advanced Materials, 2018, 30(37): 1703663. |
6 | Wang Y, Kong B, Zhao D Y, et al. Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting[J]. Nano Today, 2017, 15(2017): 26-55. |
7 | Wan F, Zhang L, Dai X, et al. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers[J]. Nature Communications, 2018, 9(1): 1656. |
8 | Zhang Y, Wan F, Huang S, et al. A chemically self-charging aqueous zinc-ion battery[J]. Nature Communications, 2020, 11(1): 2199. |
9 | Lu Y, Hou X, Miao L, et al. Cyclohexanehexone with ultrahigh capacity as cathode materials for lithium-ion batteries[J]. Angewandte Chemie-International Edition, 2019, 58(21): 7020-7024. |
10 | Sheldon R A, Pereira P C. Biocatalysis engineering: the big picture[J]. Chemical Society Reviews, 2017, 46(10): 2678-2691. |
11 | Clague M J, Urbe S, Komander D. Breaking the chains: deubiquitylating enzyme specificity begets function[J]. Nature Reviews Molecular Cell Biology, 2019, 20(6): 338-352. |
12 | Clomburg J M, Crumbley A M, Gonzalez R. Industrial biomanufacturing: the future of chemical production[J]. Science, 2017, 355(6320): aag0804. |
13 | Sheldon R A, Woodley J M. Role of biocatalysis in sustainable chemistry[J]. Chemical Reviews, 2018, 118(2): 801-838. |
14 | Larsson A L E, Persson B A, Bäckvall J E. Enzymatic resolution of alcohols coupled with ruthenium-catalyzed racemization of the substrate alcohol[J]. Angewandte Chemie-International Edition, 1997, 36(11): 1211-1212. |
15 | Wang A Q, Zhang T. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts[J]. Accounts of Chemical Research, 2012, 46(7): 1377-1386. |
16 | Corma A, Navas J, Sabater M J. Advances in one-pot synthesis through borrowing hydrogen catalysis[J]. Chemical Reviews, 2018, 118(4): 1410-1459. |
17 | Zhang W, Lee J H, Younes S H H, et al. Photobiocatalytic synthesis of chiral secondary fatty alcohols from renewable unsaturated fatty acids[J]. Nature Communications, 2020, 11(1): 2258. |
18 | Latham J, Henry J M, Sharif H H, et al. Integrated catalysis opens new arylation pathways via regiodivergent enzymatic C—H activation[J]. Nature Communications, 2016, 7: 11873. |
19 | Sheng X, Himo F. Theoretical study of enzyme promiscuity: mechanisms of hydration and carboxylation activities of phenolic acid decarboxylase[J]. ACS Catalysis, 2017, 7(3): 1733-1741. |
20 | Rios-Lombardia N, Vidal C, Cocina M, et al. Chemoenzymatic one-pot synthesis in an aqueous medium: combination of metal-catalysed allylic alcohol isomerisation-asymmetric bioamination[J]. Chemical Communications, 2015, 51(54): 10937-10940. |
21 | Burda E, Hummel W, Gröger H. Modular chemoenzymatic one-pot syntheses in aqueous media: combination of a palladium-catalyzed cross-coupling with an asymmetric biotransformation[J]. Angewandte Chemie-International Edition, 2008, 47(49): 9551-9554. |
22 | Dander J E, Giroud M, Racine S, et al. Chemoenzymatic conversion of amides to enantioenriched alcohols in aqueous medium[J]. Communications Chemistry, 2019, 2(1): 1-9. |
23 | Ahmed S T, Parmeggiani F, Weise N J, et al. Chemoenzymatic synthesis of optically pure L- and D-biarylalanines through biocatalytic asymmetric amination and palladium-catalyzed arylation[J]. ACS Catalysis, 2015, 5(9): 5410-5413. |
24 | Rodríguez-Álvarez M J, Ríos-Lombardía N, Schumacher S, et al. Combination of metal-catalyzed cycloisomerizations and biocatalysis in aqueous media: asymmetric construction of chiral alcohols, lactones, and γ-hydroxy-carbonyl compounds[J]. ACS Catalysis, 2017, 7(11): 7753-7759. |
25 | Liardo E, Ríos-Lombardía N, Morís F, et al. Hybrid organo- and biocatalytic process for the asymmetric transformation of alcohols into amines in aqueous medium[J]. ACS Catalysis, 2017, 7(7): 4768-4774. |
26 | Litman Z C, Wang Y, Zhao H, et al. Cooperative asymmetric reactions combining photocatalysis and enzymatic catalysis[J]. Nature, 2018, 560(7718): 355-359. |
27 | Kędziora K, Díaz-Rodríguez A, Lavandera I, et al. Laccase/tempo-mediated system for the thermodynamically disfavored oxidation of 2,2-dihalo-1-phenylethanol derivatives[J]. Green Chemistry, 2014, 16(5): 2448. |
28 | Scalacci N, Black G W, Mattedi G, et al. Unveiling the biocatalytic aromatizing activity of monoamine oxidases MAO-N and 6-HDNO: development of chemoenzymatic cascades for the synthesis of pyrroles[J]. ACS Catalysis, 2017, 7(2): 1295-1300. |
29 | Risi C, Zhao F, Castagnolo D. Chemo-enzymatic metathesis/aromatization cascades for the synthesis of furans: disclosing the aromatizing activity of laccase/tempo in oxygen-containing heterocycles[J]. ACS Catalysis, 2019, 9(8): 7264-7269. |
30 | Denard C A, Bartlett M J, Wang Y, et al. Development of a one-pot tandem reaction combining ruthenium-catalyzed alkene metathesis and enantioselective enzymatic oxidation to produce aryl epoxides[J]. ACS Catalysis, 2015, 5(6): 3817-3822. |
31 | Denard C A, Huang H, Bartlett M J, et al. Cooperative tandem catalysis by an organometallic complex and a metalloenzyme[J]. Angewandte Chemie-International Edition, 2014, 53(2): 465-469. |
32 | De Winter K, Desmet T, Devlamynck T, et al. Biphasic catalysis with disaccharide phosphorylases: chemoenzymatic synthesis of α-D-glucosides using sucrose phosphorylase[J]. Organic Process Research & Development, 2014, 18(6): 781-787. |
33 | Bentley R. Role of sulfur chirality in the chemical processes of biology[J]. Chemical Society Reviews, 2005, 34(7): 609-624. |
34 | Sipos G, Drinkel E E, Dorta R. The emergence of sulfoxides as efficient ligands in transition metal catalysis[J]. Chemical Society Reviews, 2015, 44(11): 3834-3860. |
35 | Nosek V, Míšek J. Chemoenzymatic deracemization of chiral sulfoxides[J]. Angewandte Chemie-International Edition, 2018, 57(31): 9849-9852. |
36 | Pesci L, Baydar M, Glueck S, et al. Development and scaling-up of the fragrance compound 4-ethylguaiacol synthesis via a two-step chemo-enzymatic reaction sequence[J]. Organic Process Research & Development, 2016, 21(1): 85-93. |
37 | Baraibar Á G, Reichert D, Mügge C, et al. Ein-topf-reaktionskaskaden durch kombination einer eingekapselten decarboxylase mit metathese zur synthese biobasierter antioxidantien[J]. Angewandte Chemie-International Edition, 2016, 128(47): 15043-15047. |
38 | Cortes-Clerget M, Akporji N, Zhou J, et al. Bridging the gap between transition metal- and bio-catalysis via aqueous micellar catalysis[J]. Nature Communications, 2019, 10(1): 2169. |
39 | Kourist R, González-Sabín J. Non‐conventional media as strategy to overcome the solvent dilemma in chemoenzymatic tandem catalysis[J]. ChemCatChem, 2020, 12(7): 1903-1912. |
40 | Gauchot V, Kroutil W, Schmitzer A R. Highly recyclable chemo-/biocatalyzed cascade reactions with ionic liquids: one-pot synthesis of chiral biaryl alcohols[J]. Chemistry, 2010, 16(23): 6748-6751. |
41 | Paris J, Telzerow A, Ríos-Lombardía N, et al. Enantioselective one-pot synthesis of biaryl-substituted amines by combining palladium and enzyme catalysis in deep eutectic solvents[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(5): 5486-5493. |
42 | Lan D, Wang X, Zhou P, et al. Deep eutectic solvents as performance additives in biphasic reactions[J]. RSC Advances, 2017, 7(64): 40367-40370. |
43 | Cicco L, Ríos-Lombardía N, Rodríguez-Álvarez M J, et al. Programming cascade reactions interfacing biocatalysis with transition-metal catalysis in deep eutectic solvents as biorenewable reaction media[J]. Green Chemistry, 2018, 20(15): 3468-3475. |
44 | Paris J, Ríos‐Lombardía N, Morís F, et al. Novel insights into the combination of metal‐ and biocatalysis: cascade one‐pot synthesis of enantiomerically pure biaryl alcohols in deep eutectic solvents[J]. ChemCatChem, 2018, 10(19): 4417-4423. |
45 | Zhou L, Zhuang Z, Zhao H, et al. Intricate hollow structures: controlled synthesis and applications in energy storage and conversion[J]. Advanced Materials, 2017, 29(20): 1602914. |
46 | Liu X, Zhang F, Jing X, et al. Complex silica composite nanomaterials templated with DNA origami[J]. Nature, 2018, 559(7715): 593-598. |
47 | Himiyama T, Waki M, Maegawa Y, et al. Cooperative catalysis of an alcohol dehydrogenase and rhodium-modified periodic mesoporous organosilica[J]. Angewandte Chemie-International Edition, 2019, 58(27): 9150-9154. |
48 | Egi M, Sugiyama K, Saneto M, et al. A mesoporous-silica-immobilized oxovanadium cocatalyst for the lipase-catalyzed dynamic kinetic resolution of racemic alcohols[J]. Angewandte Chemie-International Edition, 2013, 52(13): 3654-3658. |
49 | Köhler V, Wilson Y M, Dürrenberger M, et al. Synthetic cascades are enabled by combining biocatalysts with artificial metalloenzymes[J]. Nature Chemistry, 2013, 5(2): 93-99. |
50 | Okamoto Y, Köhler V, Paul C E, et al. Efficient in situ regeneration of NADH mimics by an artificial metalloenzyme[J]. ACS Catalysis, 2016, 6(6): 3553-3557. |
51 | Okamoto Y, Köhler V, Ward T R. An NAD(P)H-dependent artificial transfer hydrogenase for multienzymatic cascades[J]. Journal of the American Chemical Society, 2016, 138(18): 5781-5784. |
52 | Du Y J, Gao J, Zhou L Y, et al. MOF-based nanotubes to hollow nanospheres through protein-induced soft-templating pathways[J]. Advanced Science, 2019, 6(6): 1801684. |
53 | Yuan S, Feng L, Wang K, et al. Stable metal-organic frameworks: design, synthesis, and applications[J]. Advanced Materials, 2018, 30(37): 1704303. |
54 | Wang M, Wang X, Feng B, et al. Combining Pd nanoparticles on mofs with cross-linked enzyme aggregates of lipase as powerful chemoenzymatic platform for one-pot dynamic kinetic resolution of amines[J]. Journal of Catalysis, 2019, 378: 153-163. |
55 | Heidlindemann M, Rulli G, Berkessel A, et al. Combination of asymmetric organo- and biocatalytic reactions in organic media using immobilized catalysts in different compartments[J]. ACS Catalysis, 2014, 4(4): 1099-1103. |
56 | Gao S Q, Wang Z H, Ma L, et al. Mesoporous core-shell nanostructures bridging metal and biocatalyst for highly efficient cascade reactions[J]. ACS Catalysis, 2019, 10(2): 1375-1380. |
57 | Ganai A K, Shinde P, Dhar B B, et al. Development of a multifunctional catalyst for a “relay” reaction[J]. RSC Advances, 2013, 3(7): 2186. |
58 | Zhang N, Hübner R, Wang Y, et al. Surface-functionalized mesoporous nanoparticles as heterogeneous supports to transfer bifunctional catalysts into organic solvents for tandem catalysis[J]. ACS Applied Nano Materials, 2018, 1(11): 6378-6386. |
59 | Wang Y, Zhang N, Zhang E, et al. Heterogeneous metal-organic-framework-based biohybrid catalysts for cascade reactions in organic solvent[J]. Chemistry - A European Journal, 2019, 25(7): 1716-1721. |
60 | Zhang X M, Jing L Y, Chang F F, et al. Positional immobilization of Pd nanoparticles and enzymes in hierarchical yolk-shell@shell nanoreactors for tandem catalysis[J]. Chemical Communications, 2017, 53(55): 7780-7783. |
61 | Foulkes J M, Malone K J, Coker V S, et al. Engineering a biometallic whole cell catalyst for enantioselective deracemization reactions[J]. ACS Catalysis, 2011, 1(11): 1589-1594. |
62 | Wu S, Zhou Y, Gerngross D, et al. Chemo-enzymatic cascades to produce cycloalkenes from bio-based resources[J]. Nature Communications, 2019, 10(1): 5060. |
63 | Xu J, Arkin M, Peng Y, et al. Enantiocomplementary decarboxylative hydroxylation combining photocatalysis and whole-cell biocatalysis in a one-pot cascade process[J]. Green Chemistry, 2019, 21(8): 1907-1911. |
64 | Cha H J, Hwang S Y, Lee D S, et al. Whole-cell photoenzymatic cascades to synthesize long-chain aliphatic amines and esters from renewable fatty acids[J]. Angewandte Chemie-International Edition, 2020, 59(18): 7024-7028. |
65 | Peng Y, Li D, Fan J, et al. Enantiocomplementary C—H bond hydroxylation combining photo-catalysis and whole-cell biocatalysis in a one-pot cascade process[J]. European Journal of Organic Chemistry, 2020, 2020(7): 821-825. |
66 | Sato H, Hummel W, Gröger H. Cooperative catalysis of noncompatible catalysts through compartmentalization: Wacker oxidation and enzymatic reduction in a one-pot process in aqueous media[J]. Angewandte Chemie-International Edition, 2015, 54(15): 4488-4492. |
67 | Schaaf P, Bayer T, Koley M, et al. Biocompatible metal-assisted C—C cross-coupling combined with biocatalytic chiral reductions in a concurrent tandem cascade[J]. Chemical Communications, 2018, 54(92): 12978-12981. |
68 | Zumbragel N, Groger H. Merging heterocyclic chemistry and biocatalysis in one-pot processes through compartmentalization of the reaction steps[J]. Bioengineering, 2018, 5(3): 60. |
69 | Wedde S, Rommelmann P, Scherkus C, et al. An alternative approach towards poly-ε-caprolactone through a chemoenzymatic synthesis: combined hydrogenation, bio-oxidations and polymerization without the isolation of intermediates[J]. Green Chemistry, 2017, 19(5): 1286-1290. |
70 | Verho O, Bäckvall J E. Chemoenzymatic dynamic kinetic resolution: a powerful tool for the preparation of enantiomerically pure alcohols and amines[J]. Journal of the American Chemical Society, 2015, 137(12): 3996-4009. |
71 | Miranda A S, Miranda L S, Souza R O. Lipases: valuable catalysts for dynamic kinetic resolutions[J]. Biotechnology Advances, 2015, 33(5): 372-393. |
72 | Engström K, Johnston E V, Verho O, et al. Co-immobilization of an enzyme and a metal into the compartments of mesoporous silica for cooperative tandem catalysis: an artificial metalloenzyme[J]. Angewandte Chemie-International Edition, 2013, 52(52): 14006-14010. |
73 | Li X, Cao X, Xiong J, et al. Enzyme-metal hybrid catalysts for chemoenzymatic reactions[J]. Small, 2020, 16(15): 1902751. |
74 | Warner M C, Bäckvall J E. Mechanistic aspects on cyclopentadienylruthenium complexes in catalytic racemization of alcohols[J]. Accounts of Chemical Research, 2013, 46(11): 2545-2555. |
75 | Fernandez-Salas J A, Manzini S, Nolan S P. A cationic ruthenium complex for the dynamic kinetic resolution of secondary alcohols[J]. Chemistry, 2014, 20(41): 13132-13135. |
76 | Akai S, Hanada R, Fujiwara N, et al. One-pot synthesis of optically active allyl esters via lipase-vanadium combo catalysis[J]. Organic Letters, 2010, 12(21): 4900-4903. |
77 | Akai S, Tanimoto K, Kanao Y, et al. A dynamic kinetic resolution of allyl alcohols by the combined use of lipases and [VO(OSiPh3)3][J]. Angewandte Chemie-International Edition, 2006, 45(16): 2592-2595. |
78 | Hu L, Zhang Y, Ramström O. Lipase-catalyzed asymmetric synthesis of oxathiazinanones through dynamic covalent kinetic resolution[J]. Organic & Biomolecular Chemistry, 2014, 12(22): 3572-3575. |
79 | Zhang Y, Schaufelberger F, Sakulsombat M, et al. Asymmetric synthesis of 1,3-oxathiolan-5-one derivatives through dynamic covalent kinetic resolution[J]. Tetrahedron, 2014, 70(24): 3826-3831. |
80 | Schrittwieser J H, Coccia F, Kara S, et al. One-pot combination of enzyme and Pd nanoparticle catalysis for the synthesis of enantiomerically pure 1,2-amino alcohols[J]. Green Chemistry, 2013, 15(12): 3318. |
81 | González‐Martínez D, Gotor V, Gotor‐Fernández V. Stereoselective synthesis of 1‐arylpropan‐2‐amines from allylbenzenes through a Wacker‐Tsuji oxidation‐biotransamination sequential process[J]. Advanced Synthesis & Catalysis, 2019, 361: 2582-2593. |
82 | Kong X D, Yu H L, Yang S, et al. Chemoenzymatic synthesis of (R)- and (S)-propranolol using an engineered epoxide hydrolase with a high turnover number[J]. Journal of Molecular Catalysis B: Enzymatic, 2015, 122(2015): 275-281. |
83 | Marx L, Ríos-Lombardía N, Süss P, et al. Chemoenzymatic synthesis of sertraline[J]. European Journal of Organic Chemistry, 2020, 2020(4): 510-513. |
84 | Marx L, Ríos-Lombardía N, Farnberger J F, et al. Chemoenzymatic approaches to the synthesis of the calcimimetic agent cinacalcet employing transaminases and ketoreductases[J]. Advanced Synthesis & Catalysis, 2018, 360(11): 2157-2165. |
85 | Bornscheuer U T, Huisman G W, Kazlauskas R J, et al. Engineering the third wave of biocatalysis[J]. Nature, 2012, 485(7397): 185-194. |
86 | Simon R C, Mutti F G, Kroutil W. Biocatalytic synthesis of enantiopure building blocks for pharmaceuticals[J]. Drug Discovery Today: Technologies, 2013, 10(1): 37-44. |
87 | Plechkova N V, Seddon K R. Applications of ionic liquids in the chemical industry[J]. Chemical Society Reviews, 2008, 37(1): 123-150. |
[1] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[2] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[3] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[4] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[5] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[6] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
[7] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[8] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[9] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[10] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[11] | Feng WANG, Yu CHEN, Hongyan PEI, Dongdong LIU, Jing ZHANG, Lixin ZHANG. Design, synthesis and anti-fungal activity of 1,2,4-oxadiazole derivatives [J]. CIESC Journal, 2023, 74(3): 1390-1398. |
[12] | Runzhu LIU, Tiantian CHU, Xiaoa ZHANG, Chengzhong WANG, Junying ZHANG. Synthesis and properties of phenylene-containing α,ω-hydroxy-terminated fluorosilicone polymers [J]. CIESC Journal, 2023, 74(3): 1360-1369. |
[13] | Mengbo ZHANG, Linjin LOU, Yirong FENG, Yuting ZHENG, Haomiao ZHANG, Jingdai WANG, Yongrong YANG. Research progress on synthesis of alkylaluminoxanes [J]. CIESC Journal, 2023, 74(2): 525-534. |
[14] | Haiou YUAN, Fangjun YE, Shuo ZHANG, Yiqing LUO, Xigang YUAN. Synthesis of heat-integrated distillation sequences with intermediate heat exchangers [J]. CIESC Journal, 2023, 74(2): 796-806. |
[15] | Xin LIU, Jun GE, Chun LI. Light-driven microbial hybrid systems improve level of biomanufacturing [J]. CIESC Journal, 2023, 74(1): 330-341. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||