CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4688-4695.DOI: 10.11949/0438-1157.20200765
• Separation engineering • Previous Articles Next Articles
Qingwei GAO1,2(),Yao QIN1,Yumeng ZHANG1,Shanshan WANG1,Yudan ZHU1(),Xiaoyan JI2,Xiaohua LU1
Received:
2020-06-17
Revised:
2020-08-26
Online:
2020-10-05
Published:
2020-10-05
Contact:
Yudan ZHU
高庆伟1,2(),覃瑶1,张禹萌1,王珊珊1,朱育丹1(),吉晓燕2,陆小华1
通讯作者:
朱育丹
作者简介:
高庆伟(1992—),男,博士,博士后,基金资助:
CLC Number:
Qingwei GAO, Yao QIN, Yumeng ZHANG, Shanshan WANG, Yudan ZHU, Xiaoyan JI, Xiaohua LU. Preliminary study on mechanism of confined mass transfer and separation: “secondary confinement” effect of interfacial adsorption layer[J]. CIESC Journal, 2020, 71(10): 4688-4695.
高庆伟, 覃瑶, 张禹萌, 王珊珊, 朱育丹, 吉晓燕, 陆小华. 限域传质分离机制初探:界面吸附层的“二次限域”效应[J]. 化工学报, 2020, 71(10): 4688-4695.
Add to citation manager EndNote|Ris|BibTeX
膜材料 | 分离体系 | 孔道尺寸/nm | 二次限域尺寸/nm | 动力学尺寸/nm | Flux/( g·m-2·h-1) | Selectivity, S | 文献 |
---|---|---|---|---|---|---|---|
2D BN/IL | C2H4/C2H6 | 1.0 | 0.344 | C2H4 0.328,C2H6 0.381 | 384 | 32 | [ |
GO | water/methanol | 0.8 | 0.27 | water 0.265,methanol 0.38 | 960 | 9 | [ |
GO | water/ethanol | 0.875 | 0.345 | water 0.265,ethanol 0.45 | 2272 | 70 | [ |
GO/TFNC | water/ethanol | 0.853 | 0.323 | water 0.265,ethanol 0.45 | 2200 | 77 | [ |
GO/CPC | water/ethanol | 0.822 | 0.292 | water 0.265,ethanol 0.45 | 1300 | 70 | [ |
GO/mPAN | water/iso-propanol | 0.75 | 0.22 | water 0.265,iso-propanol 0.58 | 2027 | 699 | [ |
CS@GO/CHF | water/n-butanol | 1.02 | 0.49 | water 0.265,n-butanol 0.5 | 10124 | 152 | [ |
GO/mPAN | water/n-butanol | 0.84 | 0.31 | water 0.265,n-butanol 0.5 | 4340 | 199 | [ |
Table 1 Permeance and selectivity of confined membrane
膜材料 | 分离体系 | 孔道尺寸/nm | 二次限域尺寸/nm | 动力学尺寸/nm | Flux/( g·m-2·h-1) | Selectivity, S | 文献 |
---|---|---|---|---|---|---|---|
2D BN/IL | C2H4/C2H6 | 1.0 | 0.344 | C2H4 0.328,C2H6 0.381 | 384 | 32 | [ |
GO | water/methanol | 0.8 | 0.27 | water 0.265,methanol 0.38 | 960 | 9 | [ |
GO | water/ethanol | 0.875 | 0.345 | water 0.265,ethanol 0.45 | 2272 | 70 | [ |
GO/TFNC | water/ethanol | 0.853 | 0.323 | water 0.265,ethanol 0.45 | 2200 | 77 | [ |
GO/CPC | water/ethanol | 0.822 | 0.292 | water 0.265,ethanol 0.45 | 1300 | 70 | [ |
GO/mPAN | water/iso-propanol | 0.75 | 0.22 | water 0.265,iso-propanol 0.58 | 2027 | 699 | [ |
CS@GO/CHF | water/n-butanol | 1.02 | 0.49 | water 0.265,n-butanol 0.5 | 10124 | 152 | [ |
GO/mPAN | water/n-butanol | 0.84 | 0.31 | water 0.265,n-butanol 0.5 | 4340 | 199 | [ |
1 | Sholl D S, Lively R P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437. |
2 | Liu G P, Jin W Q, Xu N P. Graphene-based membranes[J]. Chemical Society Reviews, 2015, 44(15): 5016-5030. |
3 | Whitby M, Quirke N. Fluid flow in carbon nanotubes and nanopipes[J]. Nature Nanotechnology, 2007, 2(2): 87-94. |
4 | Kataoka T, Tsuru T, Nakao S I, et al. Permeation equations developed for prediction of membrane performance in pervaporation, vapor permeation and reverse osmosis based on the solution-diffusion model[J]. Journal of Chemical Engineering of Japan, 1991, 24(3): 326-333. |
5 | 金万勤, 徐南平. 限域传质分离膜[J]. 化工学报, 2018, 69(1): 50-56. |
Jin W Q, Xu N P. Membrane separation based on mechanism of confined mass transfer[J]. CIESC Journal, 2018, 69(1): 50-56. | |
6 | 朱育丹, 陆小华, 谢文龙, 等. 基于限域传质机制的膜过程定量描述的研究进展[J]. 科学通报, 2017, 62(2/3): 223-232. |
Zhu Y D, Lu X H, Xie W L, et al. The progress of quantitatively description of membrane process based on the mechanism of nanoconfined mass transfer[J]. Chinese Science Bulletin, 2017, 62: 223-232. | |
7 | Li J H, Zhang J, Ge W, et al. Multi-scale methodology for complex systems[J]. Chemical Engineering Science, 2004, 59(8): 1687-1700. |
8 | Huang W, Li J, Edwards P P. Mesoscience: exploring the common principle at mesoscales[J]. National Science Review, 2017, 5(3): 321-326. |
9 | Park H B, Kamcev J, Robeson L M, et al. Maximizing the right stuff: the trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): eaab0530. |
10 | Wang L, Boutilier M S H, Kidambi P R, et al. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes[J]. Nature Nanotechnology, 2017, 12(6): 509-522. |
11 | Zhao J, He G W, Liu G H, et al. Manipulation of interactions at membrane interfaces for energy and environmental applications[J]. Progress in Polymer Science, 2018, 80: 125-152. |
12 | Liu G P, Jin W Q. Graphene oxide membrane for molecular separation: challenges and opportunities[J]. Science China-Materials, 2018, 61(8): 1021-1026. |
13 | Zhao J, Jin W Q. Manipulation of confined structure in alcohol-permselective pervaporation membranes[J]. Chinese Journal of Chemical Engineering, 2017, 25(11): 1616-1626. |
14 | Zhu Y D, Lu X H, Xie W L, et al. The progress of quantitatively description of membrane process based on the mechanism of nanoconfined mass transfer[J]. Chinese Science Bulletin, 2017, 62(0023-074X): 223. |
15 | Ma R, Cao D, Zhu C, et al. Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice[J]. Nature, 2020, 577(7788): 60-63. |
16 | Yan H L, Wu F, Xue Y F, et al. Water adsorption and transport on oxidized two-dimensional carbon materials[J]. Chemistry-a European Journal, 2019, 25(16): 3969-3978. |
17 | Antony A C, Liang T, Sinnott S B. Nanoscale structure and dynamics of water on Pt and Cu surfaces from MD simulations[J]. Langmuir, 2018, 34(39): 11905-11911. |
18 | Bampoulis P, Witteveen J P, Kooij E S, et al. Structure and dynamics of confined alcohol-water mixtures[J]. ACS Nano, 2016, 10(7): 6762-6768. |
19 | Severin N, Sokolov I M, Rabe J P. Dynamics of ethanol and water mixtures observed in a self-adjusting molecularly thin slit pore[J]. Langmuir, 2014, 30(12): 3455-3459. |
20 | Kommu A, Singh J K. Separation of ethanol and water using graphene and hexagonal boron nitride slit pores: a molecular dynamics study[J]. The Journal of Physical Chemistry C, 2017, 121(14): 7867-7880. |
21 | Zhao M, Yang X. Segregation structures and miscellaneous diffusions for ethanol/water mixtures in graphene-based nanoscale pores[J]. Journal of Physical Chemistry C, 2015, 119(37): 21664-21673. |
22 | Lu Y M, Chen W, Wang Y L, et al. A space-confined strategy toward large-area two-dimensional crystals of ionic liquid[J]. Physical Chemistry Chemical Physics, 2020, 22(4): 1820-1825. |
23 | Mao X W, Brown P, Cervinka C, et al. Self-assembled nanostructures in ionic liquids facilitate charge storage at electrified interfaces[J]. Nature Materials, 2019, 18(12): 1350-1357. |
24 | Wang C, Qian C, Li Z, et al. Molecular insights into the abnormal wetting behavior of ionic liquids induced by the aolidified ionic layer[J]. Industrial & Engineering Chemistry Research, 2020, 59(16): 8028-8036. |
25 | Wang S, Xie Y, He G, et al. Graphene oxide membranes with heterogeneous nanodomains for efficient CO2 separations[J]. Angewandte Chemie International Edition, 2017, 56(45): 14246-14251. |
26 | Cao W, Tow G M, Lu L, et al. Diffusion of CO2/CH4 confined in narrow carbon nanotube bundles[J]. Molecular Physics, 2016, 114(16/17): 2530-2540. |
27 | Wu X, Cui X, Wu W, et al. Elucidating ultrafast molecular permeation through well-defined 2D nanochannels of lamellar membranes[J]. Angewandte Chemie International Edition, 2019, 58(51): 18524-18529. |
28 | Zhao D, Zhao J, Ji Y, et al. Facilitated water-selective permeation via PEGylation of graphene oxide membrane[J]. Journal of Membrane Science, 2018, 567: 311-320. |
29 | Dou H, Jiang B, Xu M, et al. Boron nitride membranes with a distinct nanoconfinement effect for efficient ethylene/ethane deparation[J]. Angewandte Chemie International Edition, 2019, 58(39): 13969-13975. |
30 | Liu R, Arabale G, Kim J, et al. Graphene oxide membrane for liquid phase organic molecular separation[J]. Carbon, 2014, 77: 933-938. |
31 | Yeh T M, Wang Z, Mahajan D, et al. High flux ethanol dehydration using nanofibrous membranes containing graphene oxide barrier layers[J]. Journal of Materials Chemistry A, 2013, 1(41): 12998-13003. |
32 | Tang Y P, Paul D R, Chung T S. Free-standing graphene oxide thin films assembled by a pressurized ultrafiltration method for dehydration of ethanol[J]. Journal of Membrane Science, 2014, 458: 199-208. |
33 | Hung W S, An Q F, De Guzman M, et al. Pressure-assisted self-assembly technique for fabricating composite membranes consisting of highly ordered selective laminate layers of amphiphilic graphene oxide[J]. Carbon, 2014, 68: 670-677. |
34 | Huang K, Liu G, Shen J, et al. High-efficiency water-transport channels using the synergistic effect of a hydrophilic polymer and graphene oxide laminates[J]. Advanced Functional Materials, 2015, 25(36): 5809-5815. |
35 | Tsou C H, An Q F, Lo S C, et al. Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration[J]. Journal of Membrane Science, 2015, 477: 93-100. |
36 | Zhao S, Hu Y, Yu X, et al. Surface wettability effect on fluid transport in nanoscale slit pores[J]. AIChE Journal, 2017, 63(5): 1704-1714. |
37 | Chen G, Zhu H, Hang Y, et al. Simultaneously enhancing interfacial adhesion and pervaporation separation performance of PDMS/ceramic composite membrane via a facile substrate surface grafting approach[J]. AIChE Journal, 2019, 65(11): e16773. |
[1] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[2] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[3] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[4] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[5] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[6] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[7] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[8] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[9] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
[10] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[11] | Xingchi ZHU, Zhiyuan GUO, Zhiyong JI, Jing WANG, Panpan ZHANG, Jie LIU, Yingying ZHAO, Junsheng YUAN. Simulation and optimization of selective electrodialysis magnesium and lithium separation process [J]. CIESC Journal, 2023, 74(6): 2477-2485. |
[12] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[13] | Lei WANG, Lei WANG, Yunlong BAI, Liuliu HE. Preparation of SA lithium ion sieve membrane and its adsorptive properties [J]. CIESC Journal, 2023, 74(5): 2046-2056. |
[14] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[15] | Yongyao SUN, Qiuying GAO, Wenguang ZENG, Jiaming WANG, Yifei CHEN, Yongzhe ZHOU, Gaohong HE, Xuehua RUAN. Design and optimization of membrane-based integration process for advanced utilization of associated gases in N2-EOR oilfields [J]. CIESC Journal, 2023, 74(5): 2034-2045. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||