CIESC Journal ›› 2021, Vol. 72 ›› Issue (2): 1089-1099.DOI: 10.11949/0438-1157.20201016
• Energy and environmental engineering • Previous Articles Next Articles
ZHU Pengfei1,2(),GUO Leilei1,2,YAO Jing1,2,YANG Fusheng1,2,ZHANG Zaoxiao1,2,3,WU Zhen1,2()
Received:
2020-07-27
Revised:
2020-11-24
Online:
2021-02-05
Published:
2021-02-05
Contact:
WU Zhen
朱鹏飞1,2(),郭磊磊1,2,尧兢1,2,杨福胜1,2,张早校1,2,3,吴震1,2()
通讯作者:
吴震
作者简介:
朱鹏飞(1996—),男,硕士研究生,基金资助:
CLC Number:
ZHU Pengfei, GUO Leilei, YAO Jing, YANG Fusheng, ZHANG Zaoxiao, WU Zhen. Parameter analysis and optimization of power and heat cogeneration system with biomass fueled SOFC and engine[J]. CIESC Journal, 2021, 72(2): 1089-1099.
朱鹏飞, 郭磊磊, 尧兢, 杨福胜, 张早校, 吴震. 以生物质为燃料的SOFC和发动机热电联供系统:参数分析和性能优化[J]. 化工学报, 2021, 72(2): 1089-1099.
Add to citation manager EndNote|Ris|BibTeX
工业分析/%(质量) | 元素分析/%(质量) | ||
---|---|---|---|
水分 | 9.1 | C | 35.37 |
固定碳 | 16.75 | H | 4.82 |
挥发分 | 63.69 | O | 39.15 |
灰分 | 10.46 | N | 0.96 |
低位热值/(MJ/kg) | 14.4 | S | 0.14 |
Table 1 The proximate and the ultimate analyses of the discussed rice straw biomass[18]
工业分析/%(质量) | 元素分析/%(质量) | ||
---|---|---|---|
水分 | 9.1 | C | 35.37 |
固定碳 | 16.75 | H | 4.82 |
挥发分 | 63.69 | O | 39.15 |
灰分 | 10.46 | N | 0.96 |
低位热值/(MJ/kg) | 14.4 | S | 0.14 |
参数 | 取值 | 参数 | 取值 |
---|---|---|---|
生物质转化率,αb | 0.95 | 膨胀多变效率,ηPOT | 0.92 |
逆变器转换效率, η | 0.9 | 膨胀机械效率,ηMET | 0.95 |
燃烧反应转化率,αc | 1 | 空气进口温度,Tair | 25℃ |
压缩多变效率, ηPOC | 0.92 | 空气进口压力,pair | 1 bar |
压缩机械效率,ηMEC | 0.95 | 水进口温度,Tw | 25℃ |
压缩比,γ | 4.4 | 尾气排气温度, Tstack | 150℃ |
燃料电池数量,N | 15000 | 单电池面积, Ac | 100 cm2 |
Table 2 Values of some important parameters used in the model of the hybrid system
参数 | 取值 | 参数 | 取值 |
---|---|---|---|
生物质转化率,αb | 0.95 | 膨胀多变效率,ηPOT | 0.92 |
逆变器转换效率, η | 0.9 | 膨胀机械效率,ηMET | 0.95 |
燃烧反应转化率,αc | 1 | 空气进口温度,Tair | 25℃ |
压缩多变效率, ηPOC | 0.92 | 空气进口压力,pair | 1 bar |
压缩机械效率,ηMEC | 0.95 | 水进口温度,Tw | 25℃ |
压缩比,γ | 4.4 | 尾气排气温度, Tstack | 150℃ |
燃料电池数量,N | 15000 | 单电池面积, Ac | 100 cm2 |
决策变量 | 参数含义 | 决策变量取值范围 | |
---|---|---|---|
下限 | 上限 | ||
TSOFC/℃ | 燃料电池温度 | 800 | 1100 |
μ | 燃料利用率 | 0.4 | 0.9 |
ER | 空气当量比 | 0.045 | 0.2 |
S/B | 蒸汽生物质比 | 0.3 | 1.2 |
Ts/℃ | 气化剂水蒸气温度 | 150 | 400 |
γ | 发动机压比 | 4 | 9 |
Table 3 Optimization ranges of design variables
决策变量 | 参数含义 | 决策变量取值范围 | |
---|---|---|---|
下限 | 上限 | ||
TSOFC/℃ | 燃料电池温度 | 800 | 1100 |
μ | 燃料利用率 | 0.4 | 0.9 |
ER | 空气当量比 | 0.045 | 0.2 |
S/B | 蒸汽生物质比 | 0.3 | 1.2 |
Ts/℃ | 气化剂水蒸气温度 | 150 | 400 |
γ | 发动机压比 | 4 | 9 |
变量 | A | B(最优) | C |
---|---|---|---|
操纵变量 | |||
TSOFC/℃ | 888.7 | 974.6 | 913.6 |
μ | 0.63 | 0.727 | 0.76 |
ER | 0.05 | 0.075 | 0.092 |
S/B | 1.2 | 0.665 | 0.622 |
Ts/℃ | 267.8 | 201.9 | 217.6 |
γ | 4 | 4 | 4 |
目标函数 | |||
SEEC/(USD/(kW·h)) | 0.0546 | 0.0576 | 0.0587 |
ηex/% | 50.3 | 53.5 | 53.7 |
Table 4 Optimum values of objective functions and design variables on the Pareto frontier
变量 | A | B(最优) | C |
---|---|---|---|
操纵变量 | |||
TSOFC/℃ | 888.7 | 974.6 | 913.6 |
μ | 0.63 | 0.727 | 0.76 |
ER | 0.05 | 0.075 | 0.092 |
S/B | 1.2 | 0.665 | 0.622 |
Ts/℃ | 267.8 | 201.9 | 217.6 |
γ | 4 | 4 | 4 |
目标函数 | |||
SEEC/(USD/(kW·h)) | 0.0546 | 0.0576 | 0.0587 |
ηex/% | 50.3 | 53.5 | 53.7 |
1 | 王凯军. 在机遇与挑战中迎接生物质燃气大产业时代[J]. 气体分离, 2017, (1): 58-60. |
Wang K J. In the opportunity and challenge to meet the biomass gas industry era[J]. Gas Separation, 2017, (1): 58-60. | |
2 | Yao Z, You S, Ge T, et al. Biomass gasification for syngas and biochar co-production: energy application and economic evaluation[J]. Applied Energy, 2018, 209: 43-55. |
3 | Sigurjonsson H Æ, Clausen L R. Solution for the future smart energy system: a polygeneration plant based on reversible solid oxide cells and biomass gasification producing either electrofuel or power[J]. Applied Energy, 2018, 216: 323-337. |
4 | de Lorenzo G, Fragiacomo P. Energy analysis of an SOFC system fed by syngas[J]. Energy Conversion and Management, 2015, 93: 175-186. |
5 | Shayan E, Zare V, Mirzaee I. On the use of different gasification agents in a biomass fueled SOFC by integrated gasifier: a comparative exergo-economic evaluation and optimization [J]. Energy, 2019, 171: 1126-1138. |
6 | 刘爱虢, 王冰, 翁一武, 等. 生物质-燃料电池/燃气轮机发电系统特性研究[J]. 农业机械学报, 2014, 45(8): 178-183. |
Liu A G, Wang B, Weng Y W, et al. Performance of biomass-fuel cell/gas turbine power plant[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(8): 178-183. | |
7 | 耿孝儒, 吕小静, 翁一武. 基于生物质气的固体氧化物燃料电池-燃气轮机混合动力系统的性能分析[J]. 动力工程学报, 2015, 35(2): 166-172. |
Geng X R, Lyu X J, Weng Y W. Performance analysis of an SOFC-GT hybrid system fueled with biomass[J]. Journal of Chinese Society of Power Engineering, 2015, 35(2): 166-172. | |
8 | Roy D, Ghosh S. Energy and exergy analyses of an integrated biomass gasification combined cycle employing solid oxide fuel cell and organic Rankine cycle[J]. Clean Technologies and Environmental Policy, 2017, 19: 1693-1709. |
9 | Perna A, Minutillo M, Jannelli E, et al. Performance assessment of a hybrid SOFC/MGT cogeneration power plant fed by syngas from a biomass down-draft gasifier[J]. Applied Energy, 2018, 227: 80-91. |
10 | Habibollahzade A, Gholamian E, Behzadi A. Multi-objective optimization and comparative performance analysis of hybrid biomass-based solid oxide fuel cell/solid oxide electrolyzer cell/gas turbine using different gasification agents[J]. Applied Energy, 2019, 233/234: 985-1002. |
11 | Hosseinpour J, Sadeghi M, Chitsaz A, et al. Exergy assessment and optimization of a cogeneration system based on a solid oxide fuel cell integrated with a Stirling engine[J]. Energy Conversion and Management, 2017, 143: 448-458. |
12 | Choi W, Kim J, Kim Y, et al. Experimental study of homogeneous charge compression ignition engine operation fuelled by emulated solid oxide fuel cell anode off-gas[J]. Applied Energy, 2018, 229: 42-62. |
13 | Wu Z, Tan P, Zhu P, et al. Performance analysis of a novel SOFC-HCCI engine hybrid system coupled with metal hydride reactor for H2 addition by waste heat recovery[J]. Energy Conversion and Management, 2019, 191: 119-131. |
14 | 郭英伦, 郗富强, 苏瑞智, 等. 基于LNG冷与燃料电池余热利用的TRCC串联系统[J]. 山东大学学报(工学版), 2019, 49(5): 52-57. |
Guo Y L, Xi F Q, Su R Z, et al. TRCC series system based on LNG cold energy and fuel cell waste heat utilization[J]. Journal of Shandong University (Engineering Science), 2019, 49(5): 52-57. | |
15 | Habibollahzade A, Gholamian E, Houshfar E, et al. Multi-objective optimization of biomass-based solid oxide fuel cell integrated with Stirling engine and electrolyzer[J]. Energy Conversion and Management, 2018, 171: 1116-1133. |
16 | Zhu J, Liu H, Zhuang L, et al. Modeling and simulation of a SOFC/MGT hybrid system fueled by hydrogen[C]//2016 IEEE International Conference on Information and Automation, 2016: 1070-1076. |
17 | Tauqir W, Zubair M, Nazir H. Parametric analysis of a steady state equilibrium-based biomass gasification model for syngas and biochar production and heat generation[J]. Energy Conversion and Management, 2019, 199: 111954. |
18 | Xiao J, Shen L, Zhang Y, et al. Integrated analysis of energy, economic, and environmental performance of biomethanol from rice straw in China[J]. Industrial & Engineering Chemistry Research, 2009, 48: 9999-10007. |
19 | 卢亚威. 玉米秸秆的气化模拟及优化研究[D]. 吉林: 东北电力大学, 2019. |
Lu Y W. Study on gasification simulation and optimization of corn straw[D]. Jilin: Northeast Electric Power University, 2019. | |
20 | 刘洋, 韩吉田, 游怀亮. 基于SOFC/GT/TCO2复合动力循环和溴化锂制冷机的冷热电联供系统性能[J]. 化工学报, 2018, 66: 341-349. |
Liu Y, Han J T, You H L. Performance of combined cooling, heating and power system based on SOFC/GT/TCO2 integrated power cycle and LiBr-water absorption chiller[J]. CIESC Journal, 2018, 66: 341-349. | |
21 | 王寒冰, 刘晓辉, 田民丽, 等. 基于SOFC的功冷联供系统热力学特性分析[J]. 山东大学学报(工学版), 2019, 49(5): 64-71. |
Wang H B, Liu X H, Tian M L, et al. Thermodynamic characteristic analysis of power and cooling system drived by SOFC[J]. Journal of Shandong University (Engineering Science), 2019, 49(5): 64-71. | |
22 | Ferguson J R, Fiard J M, Herbin R. Three-dimensional numerical simulation for various geometries of solid oxide fuel cells[J]. Journal of Power Sources, 1996, 58: 109-122. |
23 | Ni M, Leung M K H, Leung D Y C. Parametric study of solid oxide fuel cell performance[J]. Energy Conversion and Management, 2007, 48: 1525-1535. |
24 | Djermouni M, Ouadha A. Thermodynamic analysis of an HCCI engine based system running on natural gas[J]. Energy Conversion and Management, 2014, 88: 723-731. |
25 | 傅秦生. 能量系统的热力学分析方法[M]. 西安: 西安交通大学出版社, 2005. |
Fu Q S. Thermodynamic Analysis Method of Energy System[M]. Xi'an: Xi'an Jiaotong University Press, 2005. | |
26 | Zhu P, Yao J, Qian C, et al. High-efficiency conversion of natural gas fuel to power by an integrated system of SOFC, HCCI engine, and waste heat recovery: thermodynamic and thermo-economic analyses[J]. Fuel, 2020, 275: 117883. |
27 | Wu Z, Zhu P, Yao J, et al. Thermo-economic modeling and analysis of an NG-fueled SOFC-WGS-TSA-PEMFC hybrid energy conversion system for stationary electricity power generation[J]. Energy, 2020, 192: 116613. |
28 | Chen Y, Wang M, Liso V, et al. Parametric analysis and optimization for exergoeconomic performance of a combined system based on solid oxide fuel cell-gas turbine and supercritical carbon dioxide Brayton cycle[J]. Energy Conversion and Management, 2019, 186: 66-81. |
29 | Fremaux S, Beheshti S M, Ghassemi H, et al. An experimental study on hydrogen-rich gas production via steam gasification of biomass in a research-scale fluidized bed[J]. Energy Conversion and Management, 2015, 91: 427-432. |
30 | Zhao F, Virkar A V. Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters[J]. Journal of Power Sources, 2005, 141: 79-95. |
31 | 游怀亮, 韩吉田, 刘洋. 基于SOFC/MGT/ORC的微型冷热电联供系统性能分析[J]. 化工学报, 2018, 69: 300-308. |
You H L, Han J T, Liu Y. Thermodynamic analysis of micro tri-generation system based on SOFC/MGT/ORC [J]. CIESC Journal, 2018, 69: 300-308. | |
32 | Gadsbøll R Ø, Thomsen J, Bang-Møller C, et al. Solid oxide fuel cells powered by biomass gasification for high efficiency power generation[J]. Energy, 2017, 131: 198-206. |
33 | Denver F C. Thermo-economic optimization of an indirectly coupled solid oxide fuel cell/gas turbine hybrid power plant[J]. International Journal of Hydrogen Energy, 2010, 36: 1702-1709. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||