CIESC Journal ›› 2020, Vol. 71 ›› Issue (5): 2182-2189.DOI: 10.11949/0438-1157.20191483
• Process system engineering • Previous Articles Next Articles
Le WU(),Jing WANG,Yuqi WANG,Lan ZHENG
Received:
2019-12-06
Revised:
2020-02-26
Online:
2020-05-05
Published:
2020-05-05
Contact:
Le WU
通讯作者:
吴乐
作者简介:
吴乐(1990—),男,博士,副教授,基金资助:
CLC Number:
Le WU, Jing WANG, Yuqi WANG, Lan ZHENG. Multi-objective optimization of co-processing of bio-oil and vacuum gas oil in FCC[J]. CIESC Journal, 2020, 71(5): 2182-2189.
吴乐, 王竞, 王玉琪, 郑岚. 生物质油与蜡油在FCC装置共炼的多目标优化[J]. 化工学报, 2020, 71(5): 2182-2189.
Add to citation manager EndNote|Ris|BibTeX
生物质 | 价格/USD | 损害因子/pt |
---|---|---|
纸浆用木/t | 99.49 | 183.614 |
工业剩余木/t | 103.51 | 97.929 |
秸秆/t | 143.3 | 438.56 |
草/t | 80.68 | 110.97 |
电/(kW·h) | 0.07 | 0.06486 |
水/t | 0.065 | 0.050054 |
氢气/t | 1495 | 246.71 |
生物气/m3 | 0.1692 | 0.017429 |
Table 1 Price and damage factor of biomass, utilities and by-product
生物质 | 价格/USD | 损害因子/pt |
---|---|---|
纸浆用木/t | 99.49 | 183.614 |
工业剩余木/t | 103.51 | 97.929 |
秸秆/t | 143.3 | 438.56 |
草/t | 80.68 | 110.97 |
电/(kW·h) | 0.07 | 0.06486 |
水/t | 0.065 | 0.050054 |
氢气/t | 1495 | 246.71 |
生物气/m3 | 0.1692 | 0.017429 |
生物质 | 快速热解 | 催化热解 | ||||
---|---|---|---|---|---|---|
生物 质油 | 生物气 | 生物焦 | 生物 质油 | 生物气 | 生物焦 | |
纸浆用木 | 52.5 | 26 | 21.5 | 33 | 53 | 12.5 |
工业剩余木 | 43.3 | 12.7 | 24 | 27.3 | 52 | 15.3 |
秸秆 | 55 | 25.5 | 16.2 | 29.3 | 27.5 | 24 |
草 | 37 | 25 | 26 | 25.3 | 20.2 | 10.3 |
Table 2 Yields of pyrolysis processes/%
生物质 | 快速热解 | 催化热解 | ||||
---|---|---|---|---|---|---|
生物 质油 | 生物气 | 生物焦 | 生物 质油 | 生物气 | 生物焦 | |
纸浆用木 | 52.5 | 26 | 21.5 | 33 | 53 | 12.5 |
工业剩余木 | 43.3 | 12.7 | 24 | 27.3 | 52 | 15.3 |
秸秆 | 55 | 25.5 | 16.2 | 29.3 | 27.5 | 24 |
草 | 37 | 25 | 26 | 25.3 | 20.2 | 10.3 |
油 | 生物质油加氢 | FCC | 柴油加氢 | 汽油加氢 |
---|---|---|---|---|
脱氧生物质油 | 66 | — | — | — |
汽油 | — | 48.1 | 7.6 | 99.5 |
柴油 | — | 23 | 91.2 | — |
Table 3 Yields of FCC and HDT processes/%
油 | 生物质油加氢 | FCC | 柴油加氢 | 汽油加氢 |
---|---|---|---|---|
脱氧生物质油 | 66 | — | — | — |
汽油 | — | 48.1 | 7.6 | 99.5 |
柴油 | — | 23 | 91.2 | — |
项目 | 费用/(MUSD·a-1) | 环境影响/( Mpt·a-1) |
---|---|---|
合计 | 52.14 | 134.33 |
生物质 | 72.36 | 133.54 |
电 | 7.52 | 69.68 |
水 | 0.00047 | 0.00036 |
氢气 | — | — |
催化剂 | 9.44 | — |
生物气 | -60 | -6.18 |
投资费用① | 99.23 | — |
Table 4 Cost and environmental impact composition of the operating scheme with minimum TAC
项目 | 费用/(MUSD·a-1) | 环境影响/( Mpt·a-1) |
---|---|---|
合计 | 52.14 | 134.33 |
生物质 | 72.36 | 133.54 |
电 | 7.52 | 69.68 |
水 | 0.00047 | 0.00036 |
氢气 | — | — |
催化剂 | 9.44 | — |
生物气 | -60 | -6.18 |
投资费用① | 99.23 | — |
项目 | 费用/(MUSD·a-1) | 环境影响/(Mpt·a-1) |
---|---|---|
合计 | 64.84 | 85.73 |
生物质 | 90.99 | 86.09 |
电 | 7.52 | 69.68 |
水 | 0.00047 | 0.00036 |
氢气 | — | — |
催化剂 | 11.41 | — |
生物气 | -71.16 | -7.33 |
投资费用① | 113.32 | — |
Table 5 Cost and environmental impact composition of the operating scheme with minimum TAC
项目 | 费用/(MUSD·a-1) | 环境影响/(Mpt·a-1) |
---|---|---|
合计 | 64.84 | 85.73 |
生物质 | 90.99 | 86.09 |
电 | 7.52 | 69.68 |
水 | 0.00047 | 0.00036 |
氢气 | — | — |
催化剂 | 11.41 | — |
生物气 | -71.16 | -7.33 |
投资费用① | 113.32 | — |
权重因子 | 最优生物质原料 | 最优热解技术 |
---|---|---|
0 | 工业剩余木 | 催化热解 |
0.1 | 工业剩余木 | 催化热解 |
0.2 | 工业剩余木 | 催化热解 |
0.3 | 工业剩余木 | 催化热解 |
0.4 | 工业剩余木 | 催化热解 |
0.5 | 工业剩余木 | 催化热解 |
0.6 | 纸浆用木 | 催化热解 |
0.7 | 纸浆用木 | 催化热解 |
0.8 | 纸浆用木 | 催化热解 |
0.9 | 纸浆用木 | 催化热解 |
1 | 纸浆用木 | 催化热解 |
Table 6 Effects of weight factor on the optimal biomass feedstock and pyrolysis technology
权重因子 | 最优生物质原料 | 最优热解技术 |
---|---|---|
0 | 工业剩余木 | 催化热解 |
0.1 | 工业剩余木 | 催化热解 |
0.2 | 工业剩余木 | 催化热解 |
0.3 | 工业剩余木 | 催化热解 |
0.4 | 工业剩余木 | 催化热解 |
0.5 | 工业剩余木 | 催化热解 |
0.6 | 纸浆用木 | 催化热解 |
0.7 | 纸浆用木 | 催化热解 |
0.8 | 纸浆用木 | 催化热解 |
0.9 | 纸浆用木 | 催化热解 |
1 | 纸浆用木 | 催化热解 |
1 | 常圣强, 张晓宇, 马力强, 等. 生物质气化发电技术研究进展[J]. 化工学报, 2018, 69(8): 3318-3330. |
Chang S Q, Zhang X Y, Ma L Q, et al. Progress in biomass gasification power generation technology[J]. CIESC Journal, 2018, 69(8): 3318-3330. | |
2 | 孙来芝, 赵保峰, 杨双霞, 等. Mo/ZSM-5催化作用下生物质快速热解制生物油实验研究[J]. 化工学报, 2019, 70(8): 3160-3166. |
Sun L Z, Zhao B F, Yang S X, et al. The experiment research on catalytic fast pyrolysis of biomass into bio-oils over Mo/ZSM-5 catalyst[J]. CIESC Journal, 2019, 70(8): 3160-3166. | |
3 | Wright M M, Daugaard D E, Satrio J A, et al. Techno-economic analysis of biomass fast pyrolysis to transportation fuels[J]. Fuel, 2010, 89: S2-S10. |
4 | Mirkouei A, Haapala K R, Sessions J, et al. A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains[J]. Renew. Sustain. Energy Rev., 2017, 67: 15-35. |
5 | Wu L, Wang Y, Zheng L, et al. Techno-economic analysis of bio-oil co-processing with vacuum gas oil to transportation fuels in an existing fluid catalytic cracker[J]. Energy Convers. Manage., 2019, 197: 111901. |
6 | Stefanidis S D, Kalogiannis K G, Lappas A A. Co-processing bio-oil in the refinery for drop-in biofuels via fluid catalytic cracking[J]. Wiley Interdisciplinary Rev.: Energy Environ., 2018, 7(3): 1-18. |
7 | van Dyk S, Su J, McMillan J D, et al. Potential synergies of drop-in biofuel production with further co-processing at oil refineries[J]. Biofuels. Bioprod. Biorefin., 2019, 13(3): 760-775. |
8 | Fogassy G, Thegarid N, Toussaint G, et al. Biomass derived feedstock co-processing with vacuum gas oil for second-generation fuel production in FCC units[J]. Appl. Catal. B, 2010, 96(3/4): 476-485. |
9 | de Miguel M F, Groeneveld M J, Kersten S R A, et al. Hydrodeoxygenation of pyrolysis oil fractions: process understanding and quality assessment through co-processing in refinery units[J]. Energy Environ. Sci., 2011, 4(3): 985. |
10 | Pinho A D R, de Almeida M B B, Mendes F L, et al. Co-processing raw bio-oil and gasoil in an FCC Unit[J]. Fuel Process Technol., 2015, 131: 159-166. |
11 | Huynh T M, Armbruster U, Atia H, et al. Upgrading of bio-oil and subsequent co-processing under FCC conditions for fuel production[J]. React. Chem. Eng., 2016, 1(2): 239-251. |
12 | Gueudré L, Chapon F, Mirodatos C, et al. Optimizing the bio-gasoline quantity and quality in fluid catalytic cracking co-refining[J]. Fuel, 2017, 192: 60-70. |
13 | Jarvis M W, Olstad J, Parent Y, et al. Catalytic upgrading of biomass pyrolysis oxygenates with vacuum gas oil (VGO) using a Davison circulating riser reactor[J]. Energy Fuels, 2018, 32: 1733-1743. |
14 | Manara P, Bezergianni S, Pfisterer U. Study on phase behavior and properties of binary blends of bio-oil/fossil-based refinery intermediates: a step toward bio-oil refinery integration[J]. Energy Convers. Manage., 2018, 165: 304-315. |
15 | Thegarid N, Fogassy G, Schuurman Y, et al. Second-generation biofuels by co-processing catalytic pyrolysis oil in FCC units[J]. Appl. Catal. B, 2014, 145: 161-166. |
16 | Wang C, Li M, Fang Y. Coprocessing of catalytic-pyrolysis-derived bio-oil with VGO in a pilot-scale FCC riser[J]. Ind. Eng. Chem. Res., 2016, 55(12): 3525-3534. |
17 | Lindfors C, Paasikallio V, Kuoppala E, et al. Co-processing of dry bio-oil, catalytic pyrolysis oil, and hydrotreated bio-oil in a micro activity test unit[J]. Energy Fuels, 2015, 29(6): 3707-3714. |
18 | Naik D V, Kumar V, Prasad B, et al. Catalytic cracking of pyrolysis oil oxygenates (aliphatic and aromatic) with vacuum gas oil and their characterization[J]. Chem. Eng. Res. Des., 2014, 92(8): 1579-1590. |
19 | Wu L, Wang Y, Zheng L, et al. Design and optimization of bio-oil co-processing with vacuum gas oil in a refinery[J]. Energy Convers. Manage., 2019, 195: 620-629. |
20 | Heng L, Zhang H, Xiao J, et al. Life cycle assessment of polyol fuel from corn stover via fast pyrolysis and upgrading[J]. ACS Sustain. Chem. Eng., 2018, 6(2): 2733-2740. |
21 | 吴乐, 朱强, 刘永忠. 燃油加氢深度脱硫过程的生态环境影响分析[J]. 石油学报(石油加工), 2016, 32(2): 343-349. |
Wu L, Zhu Q, Liu Y Z. Analysis of eco-environmental impacts of deep hydrodesulfurization process for fuel production[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2016, 32(2): 343-349. | |
22 | 钱宇, 杨思宇, 贾小平, 等. 能源和化工系统的全生命周期评价和可持续性研究[J]. 化工学报, 2013, 64(1): 133-147. |
Qian Y, Yang S Y, Jia X P, et al. Life cycle assessment and sustainability of energy and chemical processes[J]. CIESC Journal, 2013, 64(1): 133-147. | |
23 | Bademlioglu A H, Canbolat A S, Kaynakli O. Multi-objective optimization of parameters affecting organic Rankine cycle performance characteristics with Taguchi-grey relational analysis[J]. Renew. Sustain. Energy Rev., 2020, 117: 109483. |
24 | Wu L, Liu Y, Liang X, et al. Multi-objective optimization for design of a steam system with drivers option in process industries[J]. J. Clean. Prod., 2016, 136: 89-98. |
25 | Shi B, Yan L X, Wu W. Multi-objective optimization for combined heat and power economic dispatch with power transmission loss and emission reduction[J]. Energy, 2013, 56: 135-143. |
26 | Goedkoop M, Spriensma R. The Eco-indicator 99: A Damage Oriented Method for Life Cycle Impact Assessment. Methdology Report[M]. 3rd ed. Netherlands: PRé Consultants, 2000. |
27 | Wu L, Liu Y. Environmental impacts of hydrotreating processes for the production of clean fuels based on life cycle assessment[J]. Fuel, 2016, 164: 352-360. |
28 | Herva M, Franco A, Carrasco E F, et al. Review of corporate environmental indicators[J]. J. Clean. Prod., 2011, 19(15): 1687-1699. |
29 | Turk J, Mladenović A, Knez F, et al. Tar-containing reclaimed asphalt — environmental and cost assessments for two treatment scenarios[J]. J. Clean. Prod., 2014, 81: 201-210. |
30 | Wu L, Wang Y, Zheng L, et al. Multi-objective operational optimization of a hydrotreating process based on hydrogenation reaction kinetics[J]. Ind. Eng. Chem. Res., 2018, 57(46): 15785-15793. |
31 | Hegger S, Hischier R. Assignment of Characterisation Factors to the Swiss LCI Database Ecoinvent [M]. Netherlands: PRé Consultants, 2010. |
[1] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[2] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[3] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[4] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[5] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[6] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[7] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[8] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[9] | Maolin DONG, Lidong CHEN, Liulian HUANG, Weibing WU, Hongqi DAI, Huiyang BIAN. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications [J]. CIESC Journal, 2023, 74(6): 2281-2295. |
[10] | Jinbo JIANG, Xin PENG, Wenxuan XU, Rixiu MEN, Chang LIU, Xudong PENG. Study on leakage characteristics and parameter influence of pump-out spiral groove oil-gas seal [J]. CIESC Journal, 2023, 74(6): 2538-2554. |
[11] | Shanghao LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of ternary-distillation sequence based on gradient boosting decision tree [J]. CIESC Journal, 2023, 74(5): 2075-2087. |
[12] | Bimao ZHOU, Shisen XU, Xiaoxiao WANG, Gang LIU, Xiaoyu LI, Yongqiang REN, Houzhang TAN. Effect of burner bias angle on distribution characteristics of gasifier slag layer [J]. CIESC Journal, 2023, 74(5): 1939-1949. |
[13] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[14] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[15] | Jiyuan LI, Jinwang LI, Liuwei ZHOU. Heat transfer performance of cold plates with different turbulence structures [J]. CIESC Journal, 2023, 74(4): 1474-1488. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||