CIESC Journal ›› 2021, Vol. 72 ›› Issue (5): 2735-2744.DOI: 10.11949/0438-1157.20201335
• Process system engineering • Previous Articles Next Articles
WEI Bin1(),ZHOU Xin1,WANG Yaowei2,GUO Zhenlian2,CHEN Xiaobo1,LIU Yibin2(),YANG Chaohe1
Received:
2020-09-18
Revised:
2020-12-09
Online:
2021-05-05
Published:
2021-05-05
Contact:
LIU Yibin
魏彬1(),周鑫1,王耀伟2,郭振莲2,陈小博1,刘熠斌2(),杨朝合1
通讯作者:
刘熠斌
作者简介:
魏彬(1996—),男,硕士研究生, 基金资助:
CLC Number:
WEI Bin, ZHOU Xin, WANG Yaowei, GUO Zhenlian, CHEN Xiaobo, LIU Yibin, YANG Chaohe. Multi-objective optimization of FCC separation system based on improved NSGA-Ⅱ[J]. CIESC Journal, 2021, 72(5): 2735-2744.
魏彬, 周鑫, 王耀伟, 郭振莲, 陈小博, 刘熠斌, 杨朝合. 基于改进NSGA-Ⅱ算法的FCC分离系统多目标优化[J]. 化工学报, 2021, 72(5): 2735-2744.
Add to citation manager EndNote|Ris|BibTeX
校准参数 | 数值 |
---|---|
activity on pathways to C lump | 0.8577 |
activity on pathways to G lump | 0.2776 |
activity on pathways to L lump | 1.322 |
metals coke activity | 0.00886 |
catalyst deactivation factor | 0.7987 |
catalyst surface area parameter | -10.72 |
effluent per mass of catalyst into stripper | 73.27 |
stripper parameter | 3.066 |
heat of cracking parameter | 0.0029 |
H to C ratio for coke | 0.7468 |
coke burn activity | 15.43 |
kinetic coke activity factor | 0.01287 |
Table 1 Calibrated parameters of FCC model
校准参数 | 数值 |
---|---|
activity on pathways to C lump | 0.8577 |
activity on pathways to G lump | 0.2776 |
activity on pathways to L lump | 1.322 |
metals coke activity | 0.00886 |
catalyst deactivation factor | 0.7987 |
catalyst surface area parameter | -10.72 |
effluent per mass of catalyst into stripper | 73.27 |
stripper parameter | 3.066 |
heat of cracking parameter | 0.0029 |
H to C ratio for coke | 0.7468 |
coke burn activity | 15.43 |
kinetic coke activity factor | 0.01287 |
参数 | 标定值 | 模拟值 | 相对误差 |
---|---|---|---|
主分馏塔塔顶/底温度/℃ | 117/345 | 118.1/347.3 | 0.94%/0.67% |
吸收塔塔顶/底温度/℃ | 37/45 | 34.6/44.3 | 6.49%/1.56% |
解吸塔塔顶/底温度/℃ | 59/119 | 56.6/116.4 | 4.07%/2.18% |
再吸收塔塔顶/底温度/℃ | 29/43 | 26.3/40.6 | 9.31%/5.59% |
稳定塔塔顶/底温度/℃ | 57/175 | 60.6/180.7 | 6.31%/2.11% |
富气流量/(t/h) | 15.8 | 15.24 | 3.54% |
粗汽油流量/(t/h) | 26.2 | 26.77 | 2.18% |
粗汽油干点/℃ | 199.3 | 201.5 | 1.10% |
轻柴油95%馏出点/℃ | 358.7 | 363.4 | 1.31% |
Table 2 Comparison between simulated and working values of the important parameters of the separation system
参数 | 标定值 | 模拟值 | 相对误差 |
---|---|---|---|
主分馏塔塔顶/底温度/℃ | 117/345 | 118.1/347.3 | 0.94%/0.67% |
吸收塔塔顶/底温度/℃ | 37/45 | 34.6/44.3 | 6.49%/1.56% |
解吸塔塔顶/底温度/℃ | 59/119 | 56.6/116.4 | 4.07%/2.18% |
再吸收塔塔顶/底温度/℃ | 29/43 | 26.3/40.6 | 9.31%/5.59% |
稳定塔塔顶/底温度/℃ | 57/175 | 60.6/180.7 | 6.31%/2.11% |
富气流量/(t/h) | 15.8 | 15.24 | 3.54% |
粗汽油流量/(t/h) | 26.2 | 26.77 | 2.18% |
粗汽油干点/℃ | 199.3 | 201.5 | 1.10% |
轻柴油95%馏出点/℃ | 358.7 | 363.4 | 1.31% |
参数 | 模拟值 | 指标 |
---|---|---|
干气C3体积分数/% | 0.94 | <2% |
液化气C2体积分数/% | 0.22 | <0.5% |
液化气C5体积分数/% | 0.02 | <1.5% |
稳定汽油雷德蒸气压/kPa | 57.8 | 45~85 |
Table 3 Indicators of products quality control
参数 | 模拟值 | 指标 |
---|---|---|
干气C3体积分数/% | 0.94 | <2% |
液化气C2体积分数/% | 0.22 | <0.5% |
液化气C5体积分数/% | 0.02 | <1.5% |
稳定汽油雷德蒸气压/kPa | 57.8 | 45~85 |
序号 | 操作变量名称 |
---|---|
1 | 主分馏塔塔顶循环回流量 |
2 | 主分馏塔一中循环回流量 |
3 | 主分馏塔塔底循环回流量 |
4 | 主分馏塔塔底蒸汽流量 |
5 | 主分馏塔侧线汽提塔蒸汽流量 |
6 | 主分馏塔侧线汽提塔柴油抽出量 |
7 | 补充吸收剂循环量 |
8 | 稳定塔塔顶抽出量 |
9 | 稳定塔回流比 |
10 | 再吸收剂温度 |
11 | 闪蒸罐闪蒸温度 |
Table 4 Adjustable operating variables
序号 | 操作变量名称 |
---|---|
1 | 主分馏塔塔顶循环回流量 |
2 | 主分馏塔一中循环回流量 |
3 | 主分馏塔塔底循环回流量 |
4 | 主分馏塔塔底蒸汽流量 |
5 | 主分馏塔侧线汽提塔蒸汽流量 |
6 | 主分馏塔侧线汽提塔柴油抽出量 |
7 | 补充吸收剂循环量 |
8 | 稳定塔塔顶抽出量 |
9 | 稳定塔回流比 |
10 | 再吸收剂温度 |
11 | 闪蒸罐闪蒸温度 |
操作变量名称 | 范围 |
---|---|
主分馏塔塔顶循环回流量/(t/h) | 95~125 |
主分馏塔一中循环回流量/(t/h) | 50~80 |
主分馏塔塔底循环回流量/(t/h) | 105~125 |
主分馏塔侧线汽提塔柴油抽出量/(t/h) | 30.5~34 |
补充吸收剂循环量/(t/h) | 20~34 |
稳定塔塔顶抽出量/(t/h) | 9~13 |
稳定塔回流比 | 1~5 |
闪蒸罐闪蒸温度/℃ | 23-35 |
Table 5 Decision variables and their scope
操作变量名称 | 范围 |
---|---|
主分馏塔塔顶循环回流量/(t/h) | 95~125 |
主分馏塔一中循环回流量/(t/h) | 50~80 |
主分馏塔塔底循环回流量/(t/h) | 105~125 |
主分馏塔侧线汽提塔柴油抽出量/(t/h) | 30.5~34 |
补充吸收剂循环量/(t/h) | 20~34 |
稳定塔塔顶抽出量/(t/h) | 9~13 |
稳定塔回流比 | 1~5 |
闪蒸罐闪蒸温度/℃ | 23-35 |
参数值 | 拟合评价 R-square | |||
---|---|---|---|---|
a | b | c | d | |
96.91 | 9.93×10-6 | -46.82 | -0.02448 | 0.9593 |
Table 6 Fit parameters
参数值 | 拟合评价 R-square | |||
---|---|---|---|---|
a | b | c | d | |
96.91 | 9.93×10-6 | -46.82 | -0.02448 | 0.9593 |
Pc | Pm | 均一目标1 | 均一目标2 | 平均计算时间/min |
---|---|---|---|---|
0.7 | 0.1 | 0.645 | 0.359 | 396 |
0.8 | 0.1 | 0.691 | 0.364 | 407 |
0.9 | 0.1 | 0.672 | 0.369 | 442 |
0.8 | 0.005 | 0.652 | 0.360 | 368 |
0.8 | 0.01 | 0.666 | 0.382 | 377 |
0.8 | 0.05 | 0.654 | 0.343 | 393 |
自适应 | 自适应 | 0.674 | 0.337 | 338 |
Table 7 Impact of Pc and Pm on optimization
Pc | Pm | 均一目标1 | 均一目标2 | 平均计算时间/min |
---|---|---|---|---|
0.7 | 0.1 | 0.645 | 0.359 | 396 |
0.8 | 0.1 | 0.691 | 0.364 | 407 |
0.9 | 0.1 | 0.672 | 0.369 | 442 |
0.8 | 0.005 | 0.652 | 0.360 | 368 |
0.8 | 0.01 | 0.666 | 0.382 | 377 |
0.8 | 0.05 | 0.654 | 0.343 | 393 |
自适应 | 自适应 | 0.674 | 0.337 | 338 |
变量 | 工况值 | 最优解 | 调节策略 |
---|---|---|---|
汽油+液化气质量收率/% | 59.75 | 64.07 | |
能耗/MW | 29.38 | 24.42 | |
主分馏塔塔顶循环回流量/(t/h) | 110 | 114.69 | ↑ |
主分馏塔一中循环回流量/(t/h) | 70 | 67.64 | ↓ |
主分馏塔塔底循环回流量/(t/h) | 120 | 113.22 | ↓ |
主分馏塔侧线汽提塔柴油抽出量/(t/h) | 32.5 | 30 | ↓ |
补充吸收剂循环量/(t/h) | 27.5 | 21.48 | ↓ |
稳定塔塔顶抽出量/(t/h) | 10.1 | 12.03 | ↑ |
稳定塔回流比 | 2.6 | 1.81 | ↓ |
闪蒸罐闪蒸温度/℃ | 28 | 23.74 | ↓ |
Table 8 Multi-objective optimization results and best operating variables
变量 | 工况值 | 最优解 | 调节策略 |
---|---|---|---|
汽油+液化气质量收率/% | 59.75 | 64.07 | |
能耗/MW | 29.38 | 24.42 | |
主分馏塔塔顶循环回流量/(t/h) | 110 | 114.69 | ↑ |
主分馏塔一中循环回流量/(t/h) | 70 | 67.64 | ↓ |
主分馏塔塔底循环回流量/(t/h) | 120 | 113.22 | ↓ |
主分馏塔侧线汽提塔柴油抽出量/(t/h) | 32.5 | 30 | ↓ |
补充吸收剂循环量/(t/h) | 27.5 | 21.48 | ↓ |
稳定塔塔顶抽出量/(t/h) | 10.1 | 12.03 | ↑ |
稳定塔回流比 | 2.6 | 1.81 | ↓ |
闪蒸罐闪蒸温度/℃ | 28 | 23.74 | ↓ |
1 | 杨朝合, 陈小博, 李春义, 等. 催化裂化技术面临的挑战与机遇[J]. 中国石油大学学报(自然科学版), 2017, 41(6): 171-177. |
Yang C H, Chen X B, Li C Y, et al. Challenges and opportunities of fluid catalytic cracking technology[J]. Journal of China University of Petroleum (Edition of Natural Science), 2017, 41(6): 171-177. | |
2 | Pashikanti K, Liu Y. Predictive modeling of large-scale integrated refinery reaction and fractionation systems from plant data(Part 2): Fluid catalytic cracking (FCC) process[J]. Energy & Fuels, 2011, 25(11): 5298-5319. |
3 | Pinheiro C I C, Fernandes J L, Domingues L, et al. Fluid catalytic cracking (FCC) process modeling, simulation, and control[J]. Industrial & Engineering Chemistry Research, 2012, 51(1): 1-29. |
4 | 胡品慧, 袁璞. 催化裂化主分馏塔与稳定塔的关联性分析及稳定塔的控制[J]. 石油炼制与化工, 2002, 33(2): 48-51. |
Hu P H, Yuan P. Interaction analysis between main fractionator and stabilizer of FCCU and stabilizer control[J]. Petroleum Processing and Petrochemicals, 2002, 33(2): 48-51. | |
5 | 庞利敏, 包江滔. 催化裂化分馏和吸收稳定全流程模拟与优化[J]. 石油与天然气化工, 2016, 45(5): 25-29. |
Pang L M, Bao J T. Process simulation and optimization for fluid catalytic cracking fractionation system and absorption-stabilization system[J]. Chemical Engineering of Oil & Gas, 2016, 45(5): 25-29. | |
6 | 田涛. 催化裂化主分馏塔取热分布优化及操作影响研究[J]. 石油炼制与化工, 2014, 45(10): 67-71. |
Tian T. Effect of heat removal optimization on operation of FCC main fractionator[J]. Petroleum Processing and Petrochemicals, 2014, 45(10): 67-71. | |
7 | 全瀛寰, 张其鹏, 陈君丽, 等. 降低催化干气中C3+含量的Aspen Plus模拟[J]. 炼油技术与工程, 2018, 48(4): 11-15. |
Quan Y H, Zhang Q P, Chen J L, et al. Reduction of C3+ in FCC dry gas by Aspen Plus simulation[J]. Petroleum Refinery Engineering, 2018, 48(4): 11-15. | |
8 | 雷杨, 张冰剑, 魏志强, 等. 基于流程模拟的催化裂化吸收稳定系统分析与操作优化[J]. 石油炼制与化工, 2012, 43(1): 94-100. |
Lei Y, Zhang B J, Wei Z Q, et al. System analysis and operation optimization for the absorption and stabilization system in a FCC unit based on process simulation[J]. Petroleum Processing and Petrochemicals, 2012, 43(1): 94-100. | |
9 | 韩祯, 李婧伊, 隋红, 等. 催化裂化吸收稳定系统低温节能工艺开发初探[J]. 化工进展, 2015, 34(8): 2940-2945. |
Han Z, Li J Y, Sui H, et al. Preliminary study of low-temperature and energy conservation process for FCC absorption-stabilization system[J]. Chemical Industry and Engineering Progress, 2015, 34(8): 2940-2945. | |
10 | Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. |
11 | Wang D L, Feng X. Simulation and multi-objective optimization of an integrated process for hydrogen production from refinery off-gas[J]. International Journal of Hydrogen Energy, 2013, 38(29): 12968-12976. |
12 | Song R, Cui M M, Liu J J. Single and multiple objective optimization of a natural gas liquefaction process[J]. Energy, 2017, 124: 19-28. |
13 | 李霏, 杨翠丽, 李文静, 等. 基于均匀分布NSGAⅡ算法的污水处理多目标优化控制[J]. 化工学报, 2019, 70(5): 1868-1878. |
Li F, Yang C L, Li W J, et al. Optimal control of wastewater treatment process using NSGAⅡ algorithm based on multi-objective uniform distribution[J]. CIESC Journal, 2019, 70(5): 1868-1878. | |
14 | Cui P Z, Yu M X, Liu Z Q, et al. Energy, exergy, and economic (3E) analyses and multi-objective optimization of a cascade absorption refrigeration system for low-grade waste heat recovery[J]. Energy Conversion and Management, 2019, 184: 249-261. |
15 | 耿志强, 毕帅, 王尊, 等. 基于改进NSGA-Ⅱ算法的乙烯裂解炉操作优化[J]. 化工学报, 2020, 71(3): 1088-1094. |
Geng Z Q, Bi S, Wang Z, et al. Operation optimization of ethylene cracking furnace based on improved NSGA-Ⅱ algorithm[J]. CIESC Journal, 2020, 71(3): 1088-1094. | |
16 | 曹道友. 基于改进遗传算法的应用研究[D]. 合肥: 安徽大学, 2010. |
Cao D Y. Research and applications based on improved genetic algorithm[D]. Hefei: Anhui University, 2010. | |
17 | Peng D Y, Robinson D B. A new two-constant equation of state[J]. Industrial & Engineering Chemistry Fundamentals, 1976, 15(1): 59-64. |
18 | Cajander B C, Hipkin H G, Lenoir J M. Prediction of equilibrium ratios from nomograms of improved accuracy[J]. Journal of Chemical & Engineering Data, 1960, 5(3): 251-259. |
19 | Hsu C S, Robinson P R. Practical Advances in Petroleum Processing[M]. New York: Springer, 2006. |
20 | Souza J A, Vargas J V C, von Meien O F, et al. A two-dimensional model for simulation, control, and optimization of FCC risers[J]. AIChE Journal, 2006, 52(5): 1895-1905. |
21 | Alabdulkarem A, Mortazavi A, Hwang Y, et al. Optimization of propane pre-cooled mixed refrigerant LNG plant[J]. Applied Thermal Engineering, 2011, 31(6/7): 1091-1098. |
22 | da Fonseca Neto J V, Bottura C P. Parallel genetic algorithm fitness function team for eigenstructure assignment via LQR designs[C]//Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406). |
Washington, DC, USA: IEEE, 1999: 1035-1042. | |
23 | 刘蓉. 自适应粒子群算法研究及其在多目标优化中应用[D]. 广州: 华南理工大学, 2011. |
Liu R. The reaserch in adaptive particle swarm optimization and its' application in multi-objectives optimization[D]. Guangzhou: South China University of Technology, 2011. | |
24 | 李刚, 薛惠锋, 邢书宝. 遗传算法求解精度与种群大小的函数关系[J]. 计算机技术与发展, 2006, 16(7): 96-98. |
Li G, Xue H F, Xing S B. Function of genetic algorithms solution precision to population size[J]. Computer Technology and Development, 2006, 16(7): 96-98. | |
25 | 邝航宇, 金晶, 苏勇. 自适应遗传算法交叉变异算子的改进[J]. 计算机工程与应用, 2006, 42(12): 93-96, 99. |
Kuang H Y, Jin J, Su Y. Improving crossover and mutation for adaptive genetic algorithm[J]. Computer Engineering and Applications, 2006, 42(12): 93-96, 99. | |
26 | Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016: 2818-2826. |
27 | 吕琳. 基于改进的自适应多目标遗传算法的研究及其应用[D]. 天津: 天津职业技术师范大学, 2020. |
Lyu L. Research and application of improved adaptive multi-objective genetic algorithm[D]. Tianjin: Tianjin University of Technology and Education, 2020. | |
28 | Schutze O, Esquivel X, Lara A, et al. Using the averaged Hausdorff distance as a performance measure in evolutionary multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2012, 16(4): 504-522. |
29 | Hwang C L, Yoon K. Methods for multiple attribute decision making[M]//Multiple Attribute Decision Making. Berlin, Heidelberg: Springer, 1981: 58-191. |
30 | Shirazi A, Aminyavari M, Najafi B, et al. Thermal-economic-environmental analysis and multi-objective optimization of an internal-reforming solid oxide fuel cell-gas turbine hybrid system[J]. International Journal of Hydrogen Energy, 2012, 37(24): 19111-19124. |
31 | Ahmadi M H, Sayyaadi H, Mohammadi A H, et al. Thermo-economic multi-objective optimization of solar dish-stirling engine by implementing evolutionary algorithm[J]. Energy Conversion and Management, 2013, 73: 370-380. |
32 | Abdollahi G, Sayyaadi H. Application of the multi-objective optimization and risk analysis for the sizing of a residential small-scale CCHP system[J]. Energy and Buildings, 2013, 60: 330-344. |
33 | Sayyaadi H, Nejatolahi M. Multi-objective optimization of a cooling tower assisted vapor compression refrigeration system[J]. International Journal of Refrigeration, 2011, 34(1): 243-256. |
[1] | Runmiao GAO, Mengjie SONG, Enyuan GAO, Long ZHANG, Xuan ZHANG, Keke SHAO, Zekang ZHEN, Zhengyong JIANG. Review on greenhouse gas reduction related to refrigerants in cold chain [J]. CIESC Journal, 2023, 74(S1): 1-7. |
[2] | Sheng’an ZHANG, Guilian LIU. Multi-objective optimization of high-efficiency solar water electrolysis hydrogen production system and its performance [J]. CIESC Journal, 2023, 74(3): 1260-1274. |
[3] | Zeguang HAO, Qian ZHANG, Zenglin GAO, Hongwen ZHANG, Zeyu PENG, Kai YANG, Litong LIANG, Wei HUANG. Study on synergistic effect of biomass and FCC slurry co-pyrolysis [J]. CIESC Journal, 2022, 73(9): 4070-4078. |
[4] | Senshan CAO, Feng XU, Xionglin LUO. Process simulation of stream circulation system based on stability: [J]. CIESC Journal, 2022, 73(3): 1256-1269. |
[5] | Jianfei ZHANG, Jiajiang LIN, Xionglin LUO, Feng XU. Modeling analysis for product distribution control and optimization of heavy oil FCCU [J]. CIESC Journal, 2022, 73(3): 1232-1245. |
[6] | Xingshuo ZHANG, Xionglin LUO, Feng XU. Simulation closer to commercial process and prior process analysis based control loop configuration of FCCU reactor-regenerator system [J]. CIESC Journal, 2022, 73(2): 747-758. |
[7] | Qucheng LIN, Zuwei LIAO. Multi-objective optimization of work and heat exchange networks based on a decomposition algorithm [J]. CIESC Journal, 2022, 73(11): 5047-5055. |
[8] | Xu LIU, Songlin XU, Yanfei WANG. Global multi-objective optimization of trimethyl orthoformate-acetic acid extractive distillation [J]. CIESC Journal, 2022, 73(10): 4518-4526. |
[9] | Jun XU, Zhifeng WANG, Kaijun HOU, Yongfu GAO, Yiping FAN, Chunxi LU. Experimental and theoretical study on gas-solid flow characteristics in feedstock injection zone of FCC riser with double-layer nozzles [J]. CIESC Journal, 2021, 72(8): 4019-4029. |
[10] | ZHAO Yang, XIONG Weili. Multi-objective optimization control of wastewater treatment process based on multi-strategy adaptive differential evolution algorithm [J]. CIESC Journal, 2021, 72(4): 2167-2177. |
[11] | ZHU Pengfei, GUO Leilei, YAO Jing, YANG Fusheng, ZHANG Zaoxiao, WU Zhen. Parameter analysis and optimization of power and heat cogeneration system with biomass fueled SOFC and engine [J]. CIESC Journal, 2021, 72(2): 1089-1099. |
[12] | Jialei DU,Chi ZHAI,Yuanzhi ZHU,Delong XIE,Yi MEI. Simulation study on heat energy recovery technology of furnace-process phosphoric acid process [J]. CIESC Journal, 2021, 72(11): 5790-5799. |
[13] | Jiannian HAN, Gang WANG, Mei YANG, Meijia LIU, Chengdi GAO, Jinsen GAO. Thermodynamic study on fluid catalytic cracking of Fischer-Tropsch wax to produce clean gasoline [J]. CIESC Journal, 2020, 71(S1): 38-45. |
[14] | Le WU, Jing WANG, Yuqi WANG, Lan ZHENG. Multi-objective optimization of co-processing of bio-oil and vacuum gas oil in FCC [J]. CIESC Journal, 2020, 71(5): 2182-2189. |
[15] | Jun XU, Yiping FAN, Xiaojie QIAN, Zihan YAN, Chunxi LU. Theoretical analysis of motion-diffusion characteristics in feed injection zone of FCC riser [J]. CIESC Journal, 2020, 71(4): 1450-1459. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||