1 |
Liu G P, Jin W Q, Xu N P. Graphene-based membranes[J]. Chemical Society Reviews, 2015, 44(15): 5016-5030.
|
2 |
Huang L, Zhang M, Li C, et al. Graphene-based membranes for molecular separation[J]. The Journal of Physical Chemistry Letters, 2015, 6(14): 2806-2815.
|
3 |
Huang H B, Ying Y L, Peng X S. Graphene oxide nanosheet: an emerging star material for novel separation membranes[J]. Journal of Materials Chemistry A, 2014, 2(34): 13772-13782.
|
4 |
Perreault F, Fonseca de Faria A, Elimelech M. Environmental applications of graphene-based nanomaterials[J]. Chemical Society Reviews, 2015, 44(16): 5861-5896.
|
5 |
Mahmoud K A, Mansoor B, Mansour A, et al. Functional graphene nanosheets: the next generation membranes for water desalination[J]. Desalination, 2015, 356: 208-225.
|
6 |
Goh P S, Ismail A F. Graphene-based nanomaterial: the state-of-the-art material for cutting edge desalination technology[J]. Desalination, 2015, 356: 115-128.
|
7 |
Mi B X. Materials science. Graphene oxide membranes for ionic and molecular sieving[J]. Science, 2014, 343(6172): 740-742.
|
8 |
Li Y S, Yang W S. Molecular sieve membranes: from 3D zeolites to 2D MOFs[J]. Chinese Journal of Catalysis, 2015, 36(5):692-697.
|
9 |
Gin D L, Noble R D. Chemistry. Designing the next generation of chemical separation membranes[J]. Science, 2011, 332(6030): 674-676.
|
10 |
Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2010, 39(1): 228-240.
|
11 |
Shen J, Liu G P, Huang K, et al. Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture[J]. Angewandte Chemie, 2015, 127(2): 588-592.
|
12 |
Sun L, Huang H, Peng X. Laminar MoS2 membranes for molecule separation[J]. Chemical Communications (Cambridge, England), 2013, 49(91): 10718-10720.
|
13 |
Wang Z Y, Tu Q S, Zheng S X, et al. Understanding the aqueous stability and filtration capability of MoS2 membranes[J]. Nano Letters, 2017, 17(12): 7289-7298.
|
14 |
Wang Y, Li L, Wei Y, et al. Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self-supporting spacers[J]. Angewandte Chemie (International Ed. in English), 2017, 56(31): 8974-8980.
|
15 |
Sun L W, Ying Y L, Huang H B, et al. Ultrafast molecule separation through layered WS2 nanosheet membranes[J]. ACS Nano, 2014, 8(6): 6304-6311.
|
16 |
Ding L, Wei Y Y, Wang Y J, et al. A two-dimensional lamellar membrane: MXene nanosheet stacks[J]. Angewandte Chemie International Edition, 2017, 56(7): 1825-1829.
|
17 |
Liu Y, Wang N Y, Cao Z W, et al. Molecular sieving through interlayer galleries[J]. J. Mater. Chem. A, 2014, 2(5): 1235-1238.
|
18 |
Thebo K H, Qian X, Zhang Q, et al. Highly stable graphene-oxide-based membranes with superior permeability[J]. Nature Communications, 2018, 9(1): 1486.
|
19 |
Ran J, Pan T, Wu Y Y, et al. Endowing g-C3N4 membranes with superior permeability and stability by using acid spacers[J]. Angewandte Chemie, 2019, 131(46): 16615-16620.
|
20 |
Guo B Y, Jiang S D, Tang M J, et al. MoS2 membranes for organic solvent nanofiltration: stability and structural control[J]. The Journal of Physical Chemistry Letters, 2019, 10(16): 4609-4617.
|
21 |
Zhu Y Q, Gupta K M, Liu Q, et al. Synthesis and seawater desalination of molecular sieving zeolitic imidazolate framework membranes[J]. Desalination, 2016, 385: 75-82.
|
22 |
Huang H, Song Z, Wei N, et al. Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes[J]. Nature Communications, 2013, 4: 2979.
|
23 |
Yu D, Shao Q, Song Q, et al. A solvent-assisted ligand exchange approach enables metal-organic frameworks with diverse and complex architectures[J]. Nature Communications, 2020, 11(1): 927.
|
24 |
Vandezande P, Gevers L E, Vankelecom I F. Solvent resistant nanofiltration: separating on a molecular level[J]. Chemical Society Reviews, 2008, 37(2): 365-405.
|
25 |
Fan H W, Gu J H, Meng H, et al. High-flux membranes based on the covalent organic framework COF-LZU1 for selective dye separation by nanofiltration[J]. Angewandte Chemie International Edition, 2018, 57(15): 4083-4087.
|
26 |
Huang L, Chen J, Gao T T, et al. Reduced graphene oxide membranes for ultrafast organic solvent nanofiltration[J]. Advanced Materials, 2016, 28(39): 8669-8674.
|
27 |
Xu S J, Shen Q, Xu Z L, et al. Novel designed TFC membrane based on host-guest interaction for organic solvent nanofiltration (OSN)[J]. Journal of Membrane Science, 2019, 588: 117227.
|
28 |
Xu Y C, Tang Y P, Liu L F, et al. Nanocomposite organic solvent nanofiltration membranes by a highly-efficient mussel-inspired co-deposition strategy[J]. Journal of Membrane Science, 2017, 526: 32-42.
|
29 |
Xu Y C, Wang Z X, Cheng X Q, et al. Positively charged nanofiltration membranes via economically mussel-substance-simulated co-deposition for textile wastewater treatment[J]. Chemical Engineering Journal, 2016, 303: 555-564.
|
30 |
Zhang H Q, Mao H, Wang J T, et al. Mineralization-inspired preparation of composite membranes with polyethyleneimine-nanoparticle hybrid active layer for solvent resistant nanofiltration[J]. Journal of Membrane Science, 2014, 470: 70-79.
|
31 |
Roy S, Ntim S A, Mitra S, et al. Facile fabrication of superior nanofiltration membranes from interfacially polymerized CNT-polymer composites[J]. Journal of Membrane Science, 2011, 375(1/2): 81-87.
|
32 |
Feng Y N, Weber M, Maletzko C, et al. Facile fabrication of sulfonated polyphenylenesulfone (sPPSU) membranes with high separation performance for organic solvent nanofiltration[J]. Journal of Membrane Science, 2018, 549: 550-558.
|
33 |
Asadi Tashvigh A, Chung T S. Facile fabrication of solvent resistant thin film composite membranes by interfacial crosslinking reaction between polyethylenimine and dibromo-p-xylene on polybenzimidazole substrates[J]. Journal of Membrane Science, 2018, 560: 115-124.
|
34 |
Gao Z F, Shi G M, Cui Y, et al. Organic solvent nanofiltration (OSN) membranes made from plasma grafting of polyethylene glycol on cross-linked polyimide ultrafiltration substrates[J]. Journal of Membrane Science, 2018, 565: 169-178.
|