CIESC Journal ›› 2021, Vol. 72 ›› Issue (8): 3984-3996.DOI: 10.11949/0438-1157.20201704
• Reviews and monographs • Previous Articles Next Articles
Xinbin NIE(),Dehao ZHANG,Weicheng YAN()
Received:
2020-11-30
Revised:
2021-01-18
Online:
2021-08-05
Published:
2021-08-05
Contact:
Weicheng YAN
通讯作者:
颜伟城
作者简介:
聂新斌(1997—),男,硕士研究生,基金资助:
CLC Number:
Xinbin NIE, Dehao ZHANG, Weicheng YAN. Research progress of functional microbubble materials[J]. CIESC Journal, 2021, 72(8): 3984-3996.
聂新斌, 张德浩, 颜伟城. 功能型微泡材料的研究进展[J]. 化工学报, 2021, 72(8): 3984-3996.
Add to citation manager EndNote|Ris|BibTeX
68 | Qin S, Caskey C F, Ferrara K W. Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering[J]. Physics in Medicine and Biology, 2009, 54(6): R27-R57. |
69 | Chowdhury S M, Abou-Elkacem L, Lee T, et al. Ultrasound and microbubble mediated therapeutic delivery: underlying mechanisms and future outlook[J]. Journal of Controlled Release, 2020, 326: 75-90. |
70 | 赖斌. 载多西紫杉醇脂质微泡联合超声靶向破裂对人胃癌细胞增殖及凋亡影响的研究[D]. 南昌: 南昌大学, 2019. |
Lai B. Study on the effect of docetaxel lipid microbubbles combined with ultrasound-targeted on proliferation and apoptosis of human gastric cancer cells[D]. Nanchang: Nanchang University, 2019. | |
71 | Deelman L E, Declèves A E, Rychak J J, et al. Targeted renal therapies through microbubbles and ultrasound[J]. Advanced Drug Delivery Reviews, 2010, 62(14): 1369-1377. |
72 | Otani K, Kamiya A, Miyazaki T, et al. Surface modification with lactadherin augments the attachment of sonazoid microbubbles to glycoprotein IIb/IIIa[J]. Ultrasound in Medicine & Biology, 2019, 45(6): 1455-1465. |
73 | Tayier B, Deng Z, Wang Y, et al. Biosynthetic nanobubbles for targeted gene delivery by focused ultrasound[J]. Nanoscale, 2019, 11(31): 14757-14768. |
74 | Klintham P, Tongchitpakdee S, Chinsirikul W, et al. Combination of microbubbles with oxidizing sanitizers to eliminate Escherichia coli and Salmonella Typhimurium on Thai leafy vegetables[J]. Food Control, 2017, 77: 260-269. |
75 | Kobayashi F, Odake S. Application of a two-stage system with pressurized carbon dioxide microbubbles for inactivating enzymes and microorganisms in unpasteurized sake and unfiltered beer[M]//Alcoholic Beverages. Amsterdam: Elsevier, 2019: 199-241. |
76 | Wright A, Taglioli M, Montazersadgh F, et al. Microbubble-enhanced DBD plasma reactor: design, characterisation and modelling[J]. Chemical Engineering Research and Design, 2019, 144: 159-173. |
1 | Sirsi S R, Borden M A. Microbubble compositions, properties and biomedical applications[J]. Bubble Science, Engineering & Technology, 2009, 1(1/2): 3-17. |
2 | Cosgrove D. Ultrasound contrast agents: an overview[J]. European Journal of Radiology, 2006, 60(3): 324-330. |
3 | Stride E, Saffari N. Microbubble ultrasound contrast agents: a review[J]. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, 2003, 217(6): 429-447. |
4 | Lindner J R. Microbubbles in medical imaging: current applications and future directions[J]. Nature Reviews Drug Discovery, 2004, 3(6): 527-533. |
5 | 王巍, 张秋禹, 张和鹏, 等. 医学造影用微泡材料制备方法研究进展[J]. 材料导报, 2007, 21(10): 47-50, 61. |
Wang W, Zhang Q Y, Zhang H P, et al. Advances in preparation method of microbubbles used for medical imaging[J]. Materials Review, 2007, 21(10): 47-50, 61. | |
6 | George S D, Chidangil S, Mathur D. Minireview: laser-induced formation of microbubbles—biomedical implications[J]. Langmuir, 2019, 35(31): 10139-10150. |
7 | Wyss H M, Blair D L, Morris J F, et al. Mechanism for clogging of microchannels[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2006, 74(6): 061402. |
8 | Dietrich N, Mayoufi N, Poncin S, et al. Bubble formation at an orifice: a multiscale investigation[J]. Chemical Engineering Science, 2013, 92: 118-125. |
9 | Fu T T, Ma Y G. Bubble formation and breakup dynamics in microfluidic devices: a review[J]. Chemical Engineering Science, 2015, 135: 343-372. |
10 | Pulsipher K W, Hammer D A, Lee D, et al. Engineering theranostic microbubbles using microfluidics for ultrasound imaging and therapy: a review[J]. Ultrasound in Medicine & Biology, 2018, 44(12): 2441-2460. |
11 | Farook U, Stride E, Edirisinghe M J. Preparation of suspensions of phospholipid-coated microbubbles by coaxial electrohydrodynamic atomization[J]. Journal of the Royal Society Interface Interface, 2009, 6(32): 271-277. |
12 | Farook U, Stride E, Edirisinghe M J. Stability of microbubbles prepared by co-axial electrohydrodynamic atomisation[J]. European Biophysics Journal, 2009, 38(5): 713-718. |
13 | Enayati M, Chang M W, Bragman F, et al. Electrohydrodynamic preparation of particles, capsules and bubbles for biomedical engineering applications[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 382(1/2/3): 154-164. |
14 | Yan W C, Ong X J, Pun K T, et al. Preparation of tPA-loaded microbubbles as potential theranostic agents: a novel one-step method via coaxial electrohydrodynamic atomization technique[J]. Chemical Engineering Journal, 2017, 307: 168-180. |
15 | 赵应征, 张彦. 微泡超声造影剂的研究进展[J]. 国外医学.药学分册, 2003, 30(5): 298-302. |
Zhao Y Z, Zhang Y. Research progress of microbubble ultrasonic contrast agent[J]. Foreign Medical Sciences Section on Pharmacy, 2003, 30(5): 298-302. | |
16 | de Saint Victor M, Crake C, Coussios C C, et al. Properties, characteristics and applications of microbubbles for sonothrombolysis[J]. Expert Opinion on Drug Delivery, 2014, 11(2): 187-209. |
17 | Jang W, Nikolov A, Wasan D T. The destabilization of aerated food products[J]. Journal of Food Engineering, 2006, 76(2): 256-260. |
18 | Malik M A, Ghaffar A, Malik S A. Water purification by electrical discharges[J]. Plasma Sources Science and Technology, 2001, 10(1): 82-91. |
19 | Yun S, Giri S S, Kim H J, et al. Enhanced bath immersion vaccination through microbubble treatment in the cyprinid loach[J]. Fish & Shellfish Immunology, 2019, 91: 12-18. |
20 | Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities[J]. Arabian Journal of Chemistry, 2019, 12(7): 908-931. |
21 | 张阳, 米成嵘, 王文. 靶向微泡超声造影剂的研究进展[J]. 宁夏医科大学学报, 2016, 38(4): 475-479. |
Zhang Y, Mi C R, Wang W. Research progress of targeted microbubble ultrasound contrast agents[J]. Journal of Ningxia Medical University, 2016, 38(4): 475-479. | |
22 | Mohamedi G, Azmin M, Pastoriza-Santos I, et al. Effects of gold nanoparticles on the stability of microbubbles[J]. Langmuir, 2012, 28(39): 13808-13815. |
23 | Chen H S, Li J, Zhou W Z, et al. Sonication-microfluidics for fabrication of nanoparticle-stabilized microbubbles[J]. Langmuir, 2014, 30(15): 4262-4266. |
24 | Unnikrishnan S, Klibanov A L. Microbubbles as ultrasound contrast agents for molecular imaging: preparation and application[J]. American Journal of Roentgenology, 2012, 199(2): 292-299. |
25 | Nosrati H, Sefidi N, Sharafi A, et al. Bovine serum albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug[J]. Bioorganic Chemistry, 2018, 76: 501-509. |
26 | Al-Jawadi S, Thakur S S. Ultrasound-responsive lipid microbubbles for drug delivery: a review of preparation techniques to optimise formulation size, stability and drug loading[J]. International Journal of Pharmaceutics, 2020, 585: 119559. |
27 | Owen J, Crake C, Lee J Y, et al. A versatile method for the preparation of particle-loaded microbubbles for multimodality imaging and targeted drug delivery[J]. Drug Delivery and Translational Research, 2018, 8(2): 342-356. |
28 | 张平平, 张鉴, 李军, 等. 一种新的药物传递系统: 超声微泡剂[J]. 中国医院药学杂志, 2008, 28(13): 1110-1112. |
Zhang P P, Zhang J, Li J, et al. A new drug delivery system: ultrasonic microfoaming agent [J]. Chinese Journal of Hospital Pharmacy, 2008, 28(13): 1110-1112. | |
29 | 谭开彬, 高云华, 刘平, 等. 机械振荡法制备脂膜超声造影剂的初步实验研究[J]. 中国超声医学杂志, 2006, 22(8): 561-563. |
Tan K B, Gao Y H, Liu P, et al. Preparation of lipid-coated ultrasound contrast agent by mechanical shaking: a preliminary experimental study[J]. Chinese Journal of Ultrasound in Medicine, 2006, 22(8): 561-563. | |
30 | Cho S H, Kim J Y, Kim J D. Dynamic surface tension of stable air-filled microbubbles prepared by freeze-drying a solution of lipid/surfactant mixture[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 284/285: 453-457. |
31 | Bjerknes K, Sontum P C, Smistad G, et al. Preparation of polymeric microbubbles: formulation studies and product characterisation[J]. International Journal of Pharmaceutics, 1997, 158(2): 129-136. |
32 | Manz A, Harrison D J, Verpoorte E M J, et al. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: capillary electrophoresis on a chip[J]. Journal of Chromatography A, 1992, 593(1/2): 253-258. |
33 | Wan J D, Bick A, Sullivan M, et al. Controllable microfluidic production of microbubbles in water-in-oil emulsions and the formation of porous microparticles[J]. Advanced Materials, 2008, 20(17): 3314-3318. |
34 | Yasuno M, Sugiura S, Iwamoto S, et al. Monodispersed microbubble formation using microchannel technique[J]. AIChE Journal, 2004, 50(12): 3227-3233. |
35 | Xu J H, Li S W, Chen G G, et al. Formation of monodisperse microbubbles in a microfluidic device[J]. AIChE Journal, 2006, 52(6): 2254-2259. |
36 | Yang L, Wang K, Tan J, et al. Experimental study of microbubble coalescence in a T-junction microfluidic device[J]. Microfluidics and Nanofluidics, 2012, 12(5): 715-722. |
37 | Farook U, Zhang H B, Edirisinghe M J, et al. Preparation of microbubble suspensions by co-axial electrohydrodynamic atomization[J]. Medical Engineering & Physics, 2007, 29(7): 749-754. |
38 | Xie J W, Jiang J, Davoodi P, et al. Electrohydrodynamic atomization: a two-decade effort to produce and process micro-/nanoparticulate materials[J]. Chemical Engineering Science, 2015, 125: 32-57. |
39 | Yan W C, Tong Y W, Wang C H. Coaxial electrohydrodynamic atomization toward large scale production of core-shell structured microparticles[J]. AIChE Journal, 2017, 63(12): 5303-5319. |
40 | Xu Q X, Qin H, Yin Z Y, et al. Coaxial electrohydrodynamic atomization process for production of polymeric composite microspheres[J]. Chemical Engineering Science, 2013, 104: 330-346. |
41 | Chen C P, Liu W F, Jiang P, et al. Coaxial electrohydrodynamic atomization for the production of drug-loaded micro/nanoparticles[J]. Micromachines, 2019, 10(2): E125. |
42 | Farook U, Stride E, Edirisinghe M J, et al. Microbubbling by co-axial electrohydrodynamic atomization[J]. Medical & Biological Engineering & Computing, 2007, 45(8): 781-789. |
43 | Yan W C, Chua Q W, Ong X J, et al. Fabrication of ultrasound-responsive microbubbles via coaxial electrohydrodynamic atomization for triggered release of tPA[J]. Journal of Colloid and Interface Science, 2017, 501: 282-293. |
44 | Parhizkar M, Stride E, Edirisinghe M. Preparation of monodisperse microbubbles using an integrated embedded capillary T-junction with electrohydrodynamic focusing[J]. Lab on a Chip, 2014, 14(14): 2437-2446. |
45 | Fan C H, Ting C Y, Liu H L, et al. Antiangiogenic-targeting drug-loaded microbubbles combined with focused ultrasound for glioma treatment[J]. Biomaterials, 2013, 34(8): 2142-2155. |
46 | Mahalingam S, Raimi-Abraham B T, Craig D Q M, et al. Formation of protein and protein-gold nanoparticle stabilized microbubbles by pressurized gyration[J]. Langmuir, 2015, 31(2): 659-666. |
47 | Peng Y F, Seekell R P, Cole A R, et al. Interfacial nanoprecipitation toward stable and responsive microbubbles and their use as a resuscitative fluid[J]. Angewandte Chemie International Edition, 2018, 57(5): 1271-1276. |
48 | Han Y, Liu Y F, Jiang H, et al. Large scale preparation of microbubbles by multi-channel ceramic membranes: Hydrodynamics and mass transfer characteristics[J]. The Canadian Journal of Chemical Engineering, 2017, 95(11): 2176-2185. |
49 | Duncan P B, Needham D. Microdroplet dissolution into a second-phase solvent using a micropipet technique: test of the Epstein-Plesset model for an aniline-water system[J]. Langmuir, 2006, 22(9): 4190-4197. |
50 | Borden M A, Longo M L. Dissolution behavior of lipid monolayer-coated, air-filled microbubbles: effect of lipid hydrophobic chain length[J]. Langmuir, 2002, 18(24): 9225-9233. |
51 | Kabalnov A, Wennerström H. Diffusion in evaporating solutions[J]. Soft Matter, 2009, 5(23): 4712-4718. |
52 | Kwan J J, Borden M A. Microbubble dissolution in a multigas environment[J]. Langmuir, 2010, 26(9): 6542-6548. |
53 | Oeffinger B E, Lathia J D, Dhoot N O, et al. Modification of surfactant contrast agent for targeted ultrasound imaging[C]//Proceedings of the Annual Northeast Bioengineering Conference. IEEE 29th Annual Northeast Bioengineering Conference. United States: Institute of Electrical and Electronics Engineers Inc., 2003:305-306. |
54 | Singhal S, Moser C C, Wheatley M A. Surfactant-stabilized microbubbles as ultrasound contrast agents: stability study of Span 60 and Tween 80 mixtures using a Langmuir trough[J]. Langmuir, 1993, 9(9): 2426-2429. |
55 | Mørch Ý, Hansen R E, Berg S, et al. Nanoparticle-stabilized microbubbles for multimodal imaging and drug delivery[J]. Contrast Media & Molecular Imaging, 2015, 10(5): 356-366. |
56 | Ma X C, Bussonniere A, Liu Q X. A facile sonochemical synthesis of shell-stabilized reactive microbubbles using surface-thiolated bovine serum albumin with the Traut's reagent[J]. Ultrasonics Sonochemistry, 2017, 36: 454-465. |
57 | Zhang C Y, Wang Z, Wang C N, et al. Highly uniform perfluoropropane-loaded cerasomal microbubbles as a novel ultrasound contrast agent[J]. ACS Applied Materials & Interfaces, 2016, 8(24): 15024-15032. |
58 | Cavalieri F, Zhou M F, Tortora M, et al. Methods of preparation of multifunctional microbubbles and their in vitro /in vivo assessment of stability, functional and structural properties[J]. Current Pharmaceutical Design, 2012, 18(15): 2135-2151. |
59 | Pu G. The microstructure and dissolution behavior of lipid-monolayer-coated, air-filled microbubble[D]. Davis: University of California, Davis, 2006. |
60 | Brugarolas T, Park B J, Lee M H, et al. Generation of amphiphilic Janus bubbles and their behavior at an air-water interface[J]. Advanced Functional Materials, 2011, 21(20): 3924-3931. |
61 | Brugarolas T, Gianola D S, Zhang L, et al. Tailoring and understanding the mechanical properties of nanoparticle-shelled bubbles[J]. ACS Applied Materials & Interfaces, 2014, 6(14): 11558-11572. |
62 | Anselmo A C, Mitragotri S. Nanoparticles in the clinic[J]. Bioengineering & Translational Medicine, 2016, 1(1): 10-29. |
63 | Brismar T B, Grishenkov D, Gustafsson B, et al. Magnetite nanoparticles can be coupled to microbubbles to support multimodal imaging[J]. Biomacromolecules, 2012, 13(5): 1390-1399. |
64 | Tay L M, Xu C J. Coating microbubbles with nanoparticles for medical imaging and drug delivery[J]. Nanomedicine (London, England), 2017, 12(2): 91-94. |
65 | Seo M, Gorelikov I, Williams R, et al. Microfluidic assembly of monodisperse, nanoparticle-incorporated perfluorocarbon microbubbles for medical imaging and therapy[J]. Langmuir, 2010, 26(17): 13855-13860. |
66 | Ke H T, Xing Z W, Zhao B, et al. Quantum-dot-modified microbubbles with bi-mode imaging capabilities[J]. Nanotechnology, 2009, 20(42): 425105. |
67 | Xiong X Y, Zhao F L, Shi M R, et al. Polymeric microbubbles for ultrasonic molecular imaging and targeted therapeutics[J]. Journal of Biomaterials Science, Polymer Edition, 2011, 22(4/5/6): 417-428. |
[1] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[2] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[3] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[4] | Jie LIU, Lisheng WU, Jinjin LI, Zhenghong LUO, Yinning ZHOU. Preparation and properties of polyether-based vinylogous urethane reversible crosslinked polymers [J]. CIESC Journal, 2023, 74(7): 3051-3057. |
[5] | Xuanzhi HE, Yongqing HE, Guiye WEN, Feng JIAO. Ferrofluid droplet neck self-similar breakup behavior [J]. CIESC Journal, 2023, 74(7): 2889-2897. |
[6] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[7] | Jinbo JIANG, Xin PENG, Wenxuan XU, Rixiu MEN, Chang LIU, Xudong PENG. Study on leakage characteristics and parameter influence of pump-out spiral groove oil-gas seal [J]. CIESC Journal, 2023, 74(6): 2538-2554. |
[8] | Shanghao LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of ternary-distillation sequence based on gradient boosting decision tree [J]. CIESC Journal, 2023, 74(5): 2075-2087. |
[9] | Bimao ZHOU, Shisen XU, Xiaoxiao WANG, Gang LIU, Xiaoyu LI, Yongqiang REN, Houzhang TAN. Effect of burner bias angle on distribution characteristics of gasifier slag layer [J]. CIESC Journal, 2023, 74(5): 1939-1949. |
[10] | Jiyuan LI, Jinwang LI, Liuwei ZHOU. Heat transfer performance of cold plates with different turbulence structures [J]. CIESC Journal, 2023, 74(4): 1474-1488. |
[11] | Lu DENG, Xiaojie JU, Wenjie ZHANG, Rui XIE, Wei WANG, Zhuang LIU, Dawei PAN, Liangyin CHU. Controllable preparation of radioactive chitosan embolic microspheres by microfluidic method [J]. CIESC Journal, 2023, 74(4): 1781-1794. |
[12] | Wenxuan XU, Jinbo JIANG, Xin PENG, Rixiu MEN, Chang LIU, Xudong PENG. Comparative study on leakage and film-forming characteristics of oil-gas seal with three-typical groove in a wide speed range [J]. CIESC Journal, 2023, 74(4): 1660-1679. |
[13] | Lufan JIA, Yiying WANG, Yuman DONG, Qinyuan LI, Xin XIE, Hao YUAN, Tao MENG. Aqueous two-phase system based adherent droplet microfluidics for enhanced enzymatic reaction [J]. CIESC Journal, 2023, 74(3): 1239-1246. |
[14] | Junxian CHEN, Zhongli JI, Yu ZHAO, Qian ZHANG, Yan ZHOU, Meng LIU, Zhen LIU. Study on online detection method of particulate matter in natural gas pipeline based on microwave technology [J]. CIESC Journal, 2023, 74(3): 1042-1053. |
[15] | Xianxian RAO, Miao DU, Guorong SHAN, Pengju PAN. Effect of different metal salt demulsifiers on vulcanization behavior of isobutylene isoprene rubber [J]. CIESC Journal, 2023, 74(2): 756-765. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||