CIESC Journal ›› 2021, Vol. 72 ›› Issue (3): 1549-1556.DOI: 10.11949/0438-1157.20201752
• Process system engineering • Previous Articles Next Articles
WANG Haodong1(),WANG Xin2(),WANG Zhenlei1(),CAO Chenxin1
Received:
2020-12-02
Revised:
2020-12-09
Online:
2021-03-05
Published:
2021-03-05
Contact:
WANG Xin,WANG Zhenlei
通讯作者:
王昕,王振雷
作者简介:
王浩东(1996—),男,硕士研究生,基金资助:
CLC Number:
WANG Haodong, WANG Xin, WANG Zhenlei, CAO Chenxin. Grading performance assessment method of chemical process based on Ms-NIPLS-GPR[J]. CIESC Journal, 2021, 72(3): 1549-1556.
王浩东, 王昕, 王振雷, 曹晨鑫. 基于Ms-NIPLS-GPR的化工过程性能等级评估方法[J]. 化工学报, 2021, 72(3): 1549-1556.
Add to citation manager EndNote|Ris|BibTeX
No. | 变量 | 描述 | 单位 |
---|---|---|---|
1 | ρNAP | 裂解原料密度 | kg·m-3 |
2 | CNP | 正链烷浓度 | % |
3 | CIP | 异构烷烃浓度 | % |
4 | COLE | 烯烃浓度 | % |
5 | CNAP | 环戊烃浓度 | % |
6 | CBTX | 芳烃浓度 | % |
7 | Ffeed | 原料流量 | t·h-1 |
8 | FDS | 稀释蒸汽流量 | t·h-1 |
9 | FBfuel | 底部燃料流量 | m3·h-1 |
10 | FSfuel | 侧壁燃料流量 | m3·h-1 |
11 | Co2 | 排烟氧含量 | % |
12 | Tg1 | 排烟温度1 | ℃ |
13 | Tg2 | 排烟温度2 | ℃ |
14 | Fss | 高压蒸汽流量 | kg·h-1 |
15 | Tss | 高压蒸汽温度 | ℃ |
16 | COT | 裂解出口温度 | ℃ |
17 | THK | 初馏点温度 | ℃ |
18 | TKK | 终馏点温度 | ℃ |
Table 1 Ethylene cracking furnace process variables
No. | 变量 | 描述 | 单位 |
---|---|---|---|
1 | ρNAP | 裂解原料密度 | kg·m-3 |
2 | CNP | 正链烷浓度 | % |
3 | CIP | 异构烷烃浓度 | % |
4 | COLE | 烯烃浓度 | % |
5 | CNAP | 环戊烃浓度 | % |
6 | CBTX | 芳烃浓度 | % |
7 | Ffeed | 原料流量 | t·h-1 |
8 | FDS | 稀释蒸汽流量 | t·h-1 |
9 | FBfuel | 底部燃料流量 | m3·h-1 |
10 | FSfuel | 侧壁燃料流量 | m3·h-1 |
11 | Co2 | 排烟氧含量 | % |
12 | Tg1 | 排烟温度1 | ℃ |
13 | Tg2 | 排烟温度2 | ℃ |
14 | Fss | 高压蒸汽流量 | kg·h-1 |
15 | Tss | 高压蒸汽温度 | ℃ |
16 | COT | 裂解出口温度 | ℃ |
17 | THK | 初馏点温度 | ℃ |
18 | TKK | 终馏点温度 | ℃ |
性能等级 | 实际情况 | PCA_NN | Ms-PLS-NN | Ms-NIPLS-GPR |
---|---|---|---|---|
最优 | 1~442 | 1~106 122~454 | 1~105 123~342 359~449 | 1~456 |
过渡 | 443~486 | 455~495 | 450~480 | 457~484 |
中等 | 487~994 | 496~1022 | 481~1024 | 485~1014 |
过渡 | 995~1033 | 1023~1118 | 1025~1039 | 1015~1036 |
较差 | 1034~1250 | 1119~1250 | 1040~1098 1117~1250 | 1037~1250 |
过渡 | — | 107~121 | 106~122 343~358 1099~1116 | — |
准确率 | — | 88.08% | 92% | 96.88% |
Table 2 Comparison of online assessment result and actual
性能等级 | 实际情况 | PCA_NN | Ms-PLS-NN | Ms-NIPLS-GPR |
---|---|---|---|---|
最优 | 1~442 | 1~106 122~454 | 1~105 123~342 359~449 | 1~456 |
过渡 | 443~486 | 455~495 | 450~480 | 457~484 |
中等 | 487~994 | 496~1022 | 481~1024 | 485~1014 |
过渡 | 995~1033 | 1023~1118 | 1025~1039 | 1015~1036 |
较差 | 1034~1250 | 1119~1250 | 1040~1098 1117~1250 | 1037~1250 |
过渡 | — | 107~121 | 106~122 343~358 1099~1116 | — |
准确率 | — | 88.08% | 92% | 96.88% |
1 | Harris T J. Assessment of control loop performance[J]. The Canadian Journal of Chemical Engineering, 1989, 67(5): 856-861. |
2 | Harris T J, Boudreau F, Macgregor J F. Performance assessment of multivariable feedback controllers[J]. Automatica, 1996, 32(11): 1505-1518. |
3 | Grimble M J. Controller performance benchmarking and tuning using generalised minimum variance control[J]. Automatica, 2002, 38(12): 2111-2119. |
4 | Huang B. A pragmatic approach towards assessment of control loop performance[J]. International Journal of Adaptive Control and Signal Processing, 2003, 17(7/8/9): 589-608. |
5 | 张泉灵, 黄其珍. 基于用户自定义指标的多变量控制系统性能评估技术[J]. 控制与决策, 2011, 26(7): 1117-1120. |
Zhang Q L, Huang Q Z. Multivariable control performance assessment techniques based on user-specified benchmark [J]. Control and Decision, 2011, 26(7): 1117-1120. | |
6 | Yu J, Qin S J. Statistical MIMO controller performance monitoring. Part I: Data-driven covariance benchmark[J]. Journal of Process Control, 2008, 18(3/4): 277-296. |
7 | Yu J, Qin S J. Statistical MIMO controller performance monitoring(Ⅱ): Performance diagnosis[J]. Journal of Process Control, 2008, 18(3/4): 297-319. |
8 | Qin S J. Survey on data-driven industrial process monitoring and diagnosis[J]. Annual Reviews in Control, 2012, 36(2): 220-234. |
9 | 孔祥玉, 曹泽豪, 安秋生, 等. 偏最小二乘线性模型及其非线性动态扩展模型综述[J]. 控制与决策, 2018, 33(9): 1537-1548. |
Kong X Y, Cao Z H, An Q S, et al. Review of partial least squares linear models and their nonlinear dynamic expansion models[J]. Control and Decision, 2018, 33(9): 1537-1548. | |
10 | Li G, Qin S J, Zhou D. Geometric properties of partial least squares for process monitoring[J]. Automatica, 2010, 46(1): 204-210. |
11 | Zhou D H, Li G, Qin S J. Total projection to latent structures for process monitoring[J]. AIChE Journal, 2010, 56(1): 168-178. |
12 | Liu Y, Chang Y, Wang F. Online process operating performance assessment and nonoptimal cause identification for industrial processes[J]. Journal of Process Control, 2014, 24(10): 1548-1555. |
13 | Liu Y, Wang F, Chang Y. Online fuzzy assessment of operating performance and cause identification of nonoptimal grades for industrial processes[J]. Industrial & Engineering Chemistry Research, 2013, 52(50): 18022-18030. |
14 | Liu Y, Wang F, Chang Y. Operating optimality assessment based on optimality related variations and nonoptimal cause identification for industrial processes[J]. Journal of Process Control, 2016, 39: 11-20. |
15 | 刘强, 卓洁, 郎自强, 等. 数据驱动的工业过程运行监控与自优化研究展望[J]. 自动化学报, 2018, 44(11): 1944-1956. |
Liu Q, Zhuo J, Lang Z Q, et al. Perspectives on data-driven operation monitoring and self-optimization of industrial processes[J]. Acta Automatica Sinica, 2018, 44(11): 1944-1956. | |
16 | Wang M Y, Yan G Y, Fei Z Y. Kernel PLS based prediction model construction and simulation on theoretical cases[J]. Neurocomputing, 2015, 165: 389-394. |
17 | 曹晨鑫, 杜玉鹏, 王昕, 等. 基于Ms-LWPLS的化工过程网络化性能分级评估方法[J]. 化工学报, 2019, 70: 141-149. |
Cao C X, Du Y P, Wang X, et al. Networked grading performance assessment method of chemical process based on Ms-LWPLS[J]. CIESC Journal, 2019, 70: 141-149. | |
18 | Gao Y, Kong X, Hu C, et al. Multivariate data modeling using modified kernel partial least squares[J]. Chemical Engineering Research & Design, 2015, 94: 466-474. |
19 | 赵小强, 薛永飞. 基于核T-PLS的化工过程故障检测算法[J]. 化工学报, 2013, 64(12): 4608-4614. |
Zhao X Q, Xue Y F. Fault detect algorithm of chemical process based on kernal T-PLS[J]. CIESC Journal, 2013, 64(12): 4608-4614. | |
20 | Sheng N, Liu Q, Qin S J, et al. Comprehensive monitoring of nonlinear processes based on concurrent kernel projection to latent structures[J]. IEEE Transactions on Automation Science & Engineering, 2016, 13(2): 1129-1137. |
21 | Liu H, Yang C, Carlsson B, et al. Dynamic nonlinear partial least squares modeling using Gaussian process regression[J]. Industrial & Engineering Chemistry Research, 2019, 58(36): 16676-16686. |
22 | Stott A E, Kanna S, Mandic D P, et al. An online NIPALS algorithm for partial least squares[C]//International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017: 4177-4181. |
23 | Qin S J, Dunia R. Determining the number of principal components for best reconstruction[J]. Journal of Process Control, 2000, 10(2/3): 245-250. |
24 | 赵荣荣, 赵忠盖, 刘飞. 基于k-近邻互信息的发酵过程高斯过程回归建模[J]. 化工学报, 2019, 70(12): 4741-4748. |
Zhao R R, Zhao Z G, Liu F. Gaussian process regression modeling of fermentation process based on k-nearest neighbor mutual information[J].CIESC Journal, 2019, 70(12): 4741-4748. | |
25 | 何志昆, 刘光斌, 赵曦晶, 等. 高斯过程回归方法综述[J]. 控制与决策, 2013, 28(8): 1121-1129. |
He Z K, Liu G B, Zhao X J, et al. Overview of Gaussian process regression[J]. Control and Decision, 2013, 28(8): 1121-1129. | |
26 | Liu J, Liu T, Zhang J. Window-based stepwise sequential phase partition for nonlinear batch process monitoring[J]. Industrial & Engineering Chemistry Research, 2016, 55(34): 9229-9243. |
27 | 张壤文, 田学民. 带变遗忘因子的自适应子空间预测控制器设计[J]. 化工学报, 2016, 67(3): 858-864. |
Zhang R W, Tian X M. Design of adaptive subspace predictive controller with variable forgetting factor[J]. CIESC Journal, 2016, 67(3): 858-864. | |
28 | 刘学彦, 王昕, 王振雷. 带遗忘因子的线性回归性能评估算法及应用[J]. 控制工程, 2014, 21(6): 867-872. |
Liu X Y, Wang X, Wang Z L. Performance assessment algorithm of improved linear regression with forgetting factor(ILR) and its application [J]. Control Engineering of China, 2014, 21(6): 867-872. | |
29 | 李平, 李奇安, 雷荣孝, 等. 乙烯裂解炉先进控制系统开发与应用[J]. 化工学报, 2011, 62(8): 2216-2220. |
Li P, Li Q A, Lei R X, et al. Development and application of advanced process control system for ethylene cracking heaters[J]. CIESC Journal, 2011, 62(8): 2216-2220. | |
30 | 杜玉鹏, 王振雷, 王昕. 基于多数据空间全潜结构映射的化工过程性能评估方法[J]. 化工学报, 2018, 69(3): 1014-1021. |
Du Y P, Wang Z L, Wang X. Performance assessment method of chemical process based on multi-space total projection of latent structures[J]. CIESC Journal, 2018, 69(3): 1014-1021. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||