CIESC Journal ›› 2021, Vol. 72 ›› Issue (3): 1465-1472.DOI: 10.11949/0438-1157.20201788
• Process system engineering • Previous Articles Next Articles
ZHAO Hongqing(),LIU Qilei,ZHANG Lei(),DONG Yachao,DU Jian
Received:
2020-12-05
Revised:
2020-12-11
Online:
2021-03-05
Published:
2021-03-05
Contact:
ZHANG Lei
通讯作者:
张磊
作者简介:
赵红庆(1995—),男,硕士研究生,基金资助:
CLC Number:
ZHAO Hongqing, LIU Qilei, ZHANG Lei, DONG Yachao, DU Jian. Multi-objective solvent design considering selectivity and reaction rate for pharmaceutical reactions[J]. CIESC Journal, 2021, 72(3): 1465-1472.
赵红庆, 刘奇磊, 张磊, 董亚超, 都健. 考虑选择性和反应速率的多目标制药反应溶剂设计[J]. 化工学报, 2021, 72(3): 1465-1472.
Add to citation manager EndNote|Ris|BibTeX
取代位置 | 相对Gibbs自由能/(kJ·mol-1) | ||
---|---|---|---|
反应物 | 过渡态 | 产物 | |
4-位 | 0 | 100.90 | -91.00 |
2-位 | 0 | 117.79 | -77.39 |
Table 1 Relative Gibbs free energies of reactants, transition states, and products in a vacuum
取代位置 | 相对Gibbs自由能/(kJ·mol-1) | ||
---|---|---|---|
反应物 | 过渡态 | 产物 | |
4-位 | 0 | 100.90 | -91.00 |
2-位 | 0 | 117.79 | -77.39 |
约束条件 | 基团总数 | 官能团数 | 苯环数 | 熔点/K | 沸点/K | 毒性/(mg·L-1) | 溶解度系数/MPa1/2 |
---|---|---|---|---|---|---|---|
上限 | 8 | 1 | 1 | 273.15 | — | 4.80 | 15.55 |
下限 | 3 | 0 | 0 | — | 273.15 | — | 23.39 |
Table 2 Structure and property constraints in MINLP
约束条件 | 基团总数 | 官能团数 | 苯环数 | 熔点/K | 沸点/K | 毒性/(mg·L-1) | 溶解度系数/MPa1/2 |
---|---|---|---|---|---|---|---|
上限 | 8 | 1 | 1 | 273.15 | — | 4.80 | 15.55 |
下限 | 3 | 0 | 0 | — | 273.15 | — | 23.39 |
序号 | lgk4 | lgk2 | lgk4 – lgk2 | 分子结构 |
---|---|---|---|---|
0 | -4.921 | -5.158 | 0.237 | |
1 | -5.476 | -7.712 | 2.236 | |
2 | -4.709 | -5.985 | 1.276 | |
3 | -4.276 | -5.001 | 0.725 | |
4 | -3.590 | -3.097 | -0.493 |
Table 3 Reaction solvents design results
序号 | lgk4 | lgk2 | lgk4 – lgk2 | 分子结构 |
---|---|---|---|---|
0 | -4.921 | -5.158 | 0.237 | |
1 | -5.476 | -7.712 | 2.236 | |
2 | -4.709 | -5.985 | 1.276 | |
3 | -4.276 | -5.001 | 0.725 | |
4 | -3.590 | -3.097 | -0.493 |
1 | Constable D J C, Jimenez-Gonzalez C, Henderson R K. Perspective on solvent use in the pharmaceutical industry[J]. Organic Process Research & Development, 2007, 11(11): 133-137. |
2 | Welton T. Solvents and sustainable chemistry[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471(2183): 20150502. |
3 | Fisher R. Design of experiments[J]. BMJ, 1936, 1: 554-554. |
4 | Gani R, Brignole E A. Molecular design of solvents for liquid extraction based on UNIFAC[J]. Fluid Phase Equilibria, 1983, 13: 331-340. |
5 | Gani R, Nielsen B, Fredenslund A. A group contribution approach to computer-aided molecular design[J]. AIChE Journal, 1991, 37: 1318-1332. |
6 | Scheffczyk J, Fleitmann L, Schwarz A, et al. COSMO-CAMD: a framework for optimization-based computer-aided molecular design using COSMO-RS[J]. Chemical Engineering Science, 2017, 159: 84-92. |
7 | van Dyk B, Nieuwoudt I. Design of solvents for extractive distillation[J]. Industrial & Engineering Chemistry Research, 2000, 39(5): 1423-1429. |
8 | Folić M, Adjiman C S, Pistikopoulos E N. The design of solvents for optimal reaction rates[J]. Computer Aided Chemical Engineering, 2004, 18(5): 175-180. |
9 | Zhou T, Lyu Z, Qi Z, et al. Robust design of optimal solvents for chemical reactions—a combined experimental and computational strategy[J]. Chemical Engineering Science, 2015, 137: 613-625. |
10 | Struebing H, Ganase Z, Karamertzanis P G, et al. Computer-aided molecular design of solvents for accelerated reaction kinetics[J]. Nature Chemistry, 2013, 5(11): 952-957 |
11 | Liu Q, Zhang L, Liu L, et al. Computer-aided reaction solvent design based on transition state theory and COSMO-SAC[J]. Chemical Engineering Science, 2019, 202: 300-317. |
12 | Grant E, Pan Y, Richardson J, et al. Multi-objective computer-aided solvent design for selectivity and rate in reactions[J]. Computer Aided Chemical Engineering, 2018, 44: 2437-2442. |
13 | Reichardt C. Solvents and Solvent Effects in Organic Chemistry[M]. 2nd ed. New York, USA: VCH, 1991. |
14 | Carlson R, Lundstedt T, Albano C, et al. Screening of suitable solvents in organic-synthesis-strategies for solvent selection[J]. Acta Chem. Scand, 1985, 39(2): 79-91. |
15 | Reichardt C, Welton T. Solvents and Solvent Effect in Organic Chemistry[M]. 4th ed. New York, USA: VCH, 2010. |
16 | Alam M J O A. Pyrimidine candidate as promising scaffold and their biological evaluation[J]. International Journal of Pharmacology and Pharmaceutical Sciences, 2015, 2(4): 55-69. |
17 | Shao Y, Cole A G, Brescia M, et al. Synthesis and SAR studies of trisubstituted purinones as potent and selective adenosine A2A receptor antagonists[J]. Bioorganic & Medicinal Chemistry Letters, 2009, 19(5): 1399-1402. |
18 | Bowers S, Truong A P, Ye M, et al. Design and synthesis of highly selective, orally active Polo-like kinase-2 (Plk-2) inhibitors[J]. Bioorganic & Medicinal Chemistry Letters, 2013, 23(9): 2743-2749. |
19 | Li X, Chen W, Tian Y, et al. Discovery of novel diarylpyrimidines as potent HIV NNRTIs via a structure-guided core-refining approach[J]. European Journal of Medicinal Chemistry, 2014, 80: 112-121. |
20 | Lee M, Rucil T, Hesek D, et al. Regioselective control of the SNAr amination of 5-substituted-2, 4-dichloropyrimidines. Using tertiary amine nucleophiles[J]. The Journal of Organic Chemistry, 2015, 80(15): 7757-7763. |
21 | Eyring H. The activated complex in chemical reactions[J]. The Journal of Chemical Physics, 1935, 3(2): 107-115. |
22 | Faust A. Ueber das Verhalten des Monochlorphenols von 218° Siedepunkt in der Kalischmelze[J]. Berichte Der Deutschen Chemischen Gesellschaft, 1873, 6(2): 1022-1023. |
23 | Picazo E, Houk K N, Garg N K. Computational predictions of substituted benzyne and indolyne regioselectivities[J]. Tetrahedron Letters, 2015, 56(23): 3511-3514. |
24 | Kwan E E, Zeng Y, Besser H A, et al. Concerted nucleophilic aromatic substitutions[J]. Nature Chemistry, 2018, 10(9): 917-923. |
25 | Frisch M J. Gaussian 09 Rev. D.01[CP]. Wallingford, CT, 2009. |
26 | Gonzalez C, Schlegel H B. An improved algorithm for reaction path following[J]. J. Chem. Phys., 1989, 90: 2154-2161. |
27 | Neese F. The ORCA program system[J]. WIREs Comput. Mol. Sci., 2012, 2: 73-78. |
28 | Marenich A V, Cramer C J, Truhlar D G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions[J]. The Journal of Physical Chemistry B, 2009, 113(18): 6378-6396. |
29 | te Velde G, Bickelhaupt F M, Baerends E J, et al. Chemistry with ADF[J]. Journal of Computational Chemistry, 2001, 22(9): 931-967. |
30 | Chen W, Hsieh C, Yang L, et al. A critical evaluation on the performance of COSMO-SAC models for vapor-liquid and liquid-liquid equilibrium predictions based on different quantum chemical calculations[J]. Industrial & Engineering Chemistry Research, 2016, 55(34): 9312-9322. |
31 | Liu Q, Zhang L, Liu L, et al. OptCAMD: an optimization-based framework and tool for molecular and mixture product design[J]. Computers & Chemical Engineering, 2019, 124: 285-301. |
32 | Hsieh C, Sandler S, Lin S. Improvements of COSMO-SAC for vapor-liquid and liquid–liquid equilibrium predictions[J]. Fluid Phase Equilibria, 2010, 297: 90-97. |
33 | Karunanithi A T, Achenie L E K, Gani R. A new decomposition-based computer-aided molecular/mixture design methodology for the design of optimal solvents and solvent mixtures[J]. Industrial & Engineering Chemistry Research, 2005, 44(13): 4785-4797 |
34 | Grossmann I E, Viswanathan J, Vecchietti A, et.al GAMS/DICOPT: a discrete continuous optimization package[J]. Math. Methods Appl. Sci., 2001, 24(11): 649-664. |
35 | Tawarmalani M, Sahinidis N V. A polyhedral branch-and-cut approach to global optimization[J]. Math. Program, 2005, 103(2): 225-249. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[3] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[4] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[5] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[6] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[7] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[8] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[9] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[10] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[11] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[12] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[13] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[14] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[15] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||