CIESC Journal ›› 2021, Vol. 72 ›› Issue (9): 4900-4909.DOI: 10.11949/0438-1157.20210282
• Energy and environmental engineering • Previous Articles Next Articles
Yijing LIU1,2(),Hua ZHANG1,2,Liming SHAO1,2,Pinjing HE1,2(
)
Received:
2021-02-22
Revised:
2021-04-19
Online:
2021-09-05
Published:
2021-09-05
Contact:
Pinjing HE
刘怡静1,2(),章骅1,2,邵立明1,2,何品晶1,2(
)
通讯作者:
何品晶
作者简介:
刘怡静(1994—),女,硕士研究生,基金资助:
CLC Number:
Yijing LIU, Hua ZHANG, Liming SHAO, Pinjing HE. Occurrence of chlorine in municipal solid waste and its thermal transformation[J]. CIESC Journal, 2021, 72(9): 4900-4909.
刘怡静, 章骅, 邵立明, 何品晶. 生活垃圾中氯的赋存形态及热转化规律探究[J]. 化工学报, 2021, 72(9): 4900-4909.
组分 | 氯含量/% (干基) | 组分 | 氯含量/% (干基) |
---|---|---|---|
厨余 | 0.11~2.74 | 橡胶和皮革 | 0.58~8 |
塑料 | 0.83~2.83 | 木材 | 0.05~0.29 |
纸张和硬纸板 | 0.15~0.71 | 玻璃 | 0.0081 |
纺织和地毯 | 0.36~1.1 | 其他 | 0.27~0.31 |
Table 1 Chlorine contents in the municipal solid waste components [14-18]
组分 | 氯含量/% (干基) | 组分 | 氯含量/% (干基) |
---|---|---|---|
厨余 | 0.11~2.74 | 橡胶和皮革 | 0.58~8 |
塑料 | 0.83~2.83 | 木材 | 0.05~0.29 |
纸张和硬纸板 | 0.15~0.71 | 玻璃 | 0.0081 |
纺织和地毯 | 0.36~1.1 | 其他 | 0.27~0.31 |
样品名称 | 工业分析/%(质量) | 元素组成/%(质量,干基) | ||||||
---|---|---|---|---|---|---|---|---|
含水率w① | 可燃分d① | 灰分d① | C | H | O | N | S | |
H-厨余-1 | 79.4 | 82.4±0.3 | 17.6±0.3 | 46.7±0.4 | 6.8±0.1 | 22.8±0.3 | 4.1±0.2 | 0.47±0.09 |
H-厨余-3 | 69.8 | 67.2±0.4 | 32.8±0.4 | 37.8±0.8 | 5.1±0.1 | 18.7±0.2 | 3.1±0.3 | 0.42±0.06 |
H-橡塑 | 26.3 | 77.5±2.2 | 22.5±2.2 | 64.4±1.4 | 10.1±0.1 | 1.4±0.3 | 0.29±0.04 | 0.33±0.06 |
H-纸类 | 61.1 | 88.3±0.9 | 11.7±0.9 | 41.0±0.2 | 6.20±0.01 | 39.7±1.1 | 0.41±0.05 | 0.146±0.001 |
H-织物 | 29.3 | 98.0±0.2 | 2.0±0.2 | 58.6±0.5 | 5.1±0.2 | 32.9±0.2 | 0.93±0.07 | 0.15±0.03 |
H-其他 | 6.6 | 13.3±1.7 | 86.7±1.7 | 6.7±0.1 | 1.20±0.07 | 4.3±0.3 | 0.52±0.01 | 0.42±0.01 |
X-厨余-1 | 75.1 | 83.9±0.6 | 16.1±0.6 | 43.1±1.1 | 6.1±0.2 | 30.9±1.6 | 2.6±0.3 | 0.30±0.07 |
X-厨余-2 | 76.2 | 87.3±0.5 | 12.7±0.5 | 51.5±0.2 | 7.74±0.08 | 22.5±0.5 | 3.8±0.2 | 0.55±0.04 |
X-厨余-3 | 66.6 | 87.7±0.2 | 12.3±0.2 | 44.3±0.7 | 6.86±0.08 | 32.2±1.0 | 3.05±0.08 | 0.42±0.08 |
X-橡塑 | 11.7 | 94.1±0.6 | 5.9±0.6 | 77.9±2.4 | 12.5±0.3 | 2.8±0.3 | 0.33±0.03 | 0.30±0.03 |
X-纸类 | 24.7 | 89.5±0.3 | 10.5±0.3 | 41.6±0.7 | 5.8±0.3 | 41.6±0.6 | 0.07±0.01 | 0.08±0.01 |
X-织物 | 4.7 | 98.93±0.03 | 1.07±0.03 | 79.6±0.2 | 12.9±0.3 | 6.1±0.5 | 0.010±0.001 | 0.05±0.01 |
X-其他 | 4.3 | 18.4±1.0 | 81.6±1.0 | 11.4±2.2 | 1.9±0.4 | 4.9±1.5 | 0.005±0.001 | 0.042±0.002 |
Table 2 Proximate analysis and elemental analysis results of municipal solid waste
样品名称 | 工业分析/%(质量) | 元素组成/%(质量,干基) | ||||||
---|---|---|---|---|---|---|---|---|
含水率w① | 可燃分d① | 灰分d① | C | H | O | N | S | |
H-厨余-1 | 79.4 | 82.4±0.3 | 17.6±0.3 | 46.7±0.4 | 6.8±0.1 | 22.8±0.3 | 4.1±0.2 | 0.47±0.09 |
H-厨余-3 | 69.8 | 67.2±0.4 | 32.8±0.4 | 37.8±0.8 | 5.1±0.1 | 18.7±0.2 | 3.1±0.3 | 0.42±0.06 |
H-橡塑 | 26.3 | 77.5±2.2 | 22.5±2.2 | 64.4±1.4 | 10.1±0.1 | 1.4±0.3 | 0.29±0.04 | 0.33±0.06 |
H-纸类 | 61.1 | 88.3±0.9 | 11.7±0.9 | 41.0±0.2 | 6.20±0.01 | 39.7±1.1 | 0.41±0.05 | 0.146±0.001 |
H-织物 | 29.3 | 98.0±0.2 | 2.0±0.2 | 58.6±0.5 | 5.1±0.2 | 32.9±0.2 | 0.93±0.07 | 0.15±0.03 |
H-其他 | 6.6 | 13.3±1.7 | 86.7±1.7 | 6.7±0.1 | 1.20±0.07 | 4.3±0.3 | 0.52±0.01 | 0.42±0.01 |
X-厨余-1 | 75.1 | 83.9±0.6 | 16.1±0.6 | 43.1±1.1 | 6.1±0.2 | 30.9±1.6 | 2.6±0.3 | 0.30±0.07 |
X-厨余-2 | 76.2 | 87.3±0.5 | 12.7±0.5 | 51.5±0.2 | 7.74±0.08 | 22.5±0.5 | 3.8±0.2 | 0.55±0.04 |
X-厨余-3 | 66.6 | 87.7±0.2 | 12.3±0.2 | 44.3±0.7 | 6.86±0.08 | 32.2±1.0 | 3.05±0.08 | 0.42±0.08 |
X-橡塑 | 11.7 | 94.1±0.6 | 5.9±0.6 | 77.9±2.4 | 12.5±0.3 | 2.8±0.3 | 0.33±0.03 | 0.30±0.03 |
X-纸类 | 24.7 | 89.5±0.3 | 10.5±0.3 | 41.6±0.7 | 5.8±0.3 | 41.6±0.6 | 0.07±0.01 | 0.08±0.01 |
X-织物 | 4.7 | 98.93±0.03 | 1.07±0.03 | 79.6±0.2 | 12.9±0.3 | 6.1±0.5 | 0.010±0.001 | 0.05±0.01 |
X-其他 | 4.3 | 18.4±1.0 | 81.6±1.0 | 11.4±2.2 | 1.9±0.4 | 4.9±1.5 | 0.005±0.001 | 0.042±0.002 |
Fig.6 Relationship of organic chlorine and volatile chlorine content, inorganic chlorine and non-volatile chlorine content in municipal solid waste components in air and N2 atmospheres
氯形态 | 总氯 | 无机氯 | 有机氯 | 挥发态氯A① | 固定态氯A① | 其他态氯A① | 挥发态氯N① | 固定态氯N① | 其他态氯N① |
---|---|---|---|---|---|---|---|---|---|
总氯 | 1 | ||||||||
无机氯 | |||||||||
有机氯 | |||||||||
挥发态氯A① | |||||||||
固定态氯A① | |||||||||
其他态氯A① | |||||||||
挥发态氯N① | |||||||||
固定态氯N① | |||||||||
其他态氯N① | 1 |
Table 3 Correlation analysis of different chlorine forms in municipal solid waste
氯形态 | 总氯 | 无机氯 | 有机氯 | 挥发态氯A① | 固定态氯A① | 其他态氯A① | 挥发态氯N① | 固定态氯N① | 其他态氯N① |
---|---|---|---|---|---|---|---|---|---|
总氯 | 1 | ||||||||
无机氯 | |||||||||
有机氯 | |||||||||
挥发态氯A① | |||||||||
固定态氯A① | |||||||||
其他态氯A① | |||||||||
挥发态氯N① | |||||||||
固定态氯N① | |||||||||
其他态氯N① | 1 |
主成分 | 总氯 | 无机氯 | 有机氯 | 挥发态氯A | 固定态氯A | 挥发态氯N | 固定态氯N |
---|---|---|---|---|---|---|---|
PC1 | 0.966 | 0.988 | -0.199 | 0.781 | 0.871 | 0.563 | 0.981 |
PC2 | 0.252 | 0.062 | 0.905 | 0.508 | -0.028 | 0.774 | -0.068 |
Table 4 Principal component loading
主成分 | 总氯 | 无机氯 | 有机氯 | 挥发态氯A | 固定态氯A | 挥发态氯N | 固定态氯N |
---|---|---|---|---|---|---|---|
PC1 | 0.966 | 0.988 | -0.199 | 0.781 | 0.871 | 0.563 | 0.981 |
PC2 | 0.252 | 0.062 | 0.905 | 0.508 | -0.028 | 0.774 | -0.068 |
1 | Zhang Y G, Chen Y, Meng A H, et al. Experimental and thermodynamic investigation on transfer of cadmium influenced by sulfur and chlorine during municipal solid waste (MSW) incineration[J]. Journal of Hazardous Materials, 2008, 153(1/2): 309-319. |
2 | 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2008-2019. |
National Bureau of Statistics. China Statistical Yearbook[M]. Beijing: China Statistics Press, 2008-2019. | |
3 | Song J B, Sun Y, Jin L L. PESTEL analysis of the development of the waste-to-energy incineration industry in China[J]. Renewable and Sustainable Energy Reviews, 2017, 80: 276-289. |
4 | Lee S H, Themelis N J, Castaldi M J. High-temperature corrosion in waste-to-energy boilers[J]. Journal of Thermal Spray Technology, 2007, 16(1): 104-110. |
5 | Ma W C, Hoffmann G, Schirmer M, et al. Chlorine characterization and thermal behavior in MSW and RDF[J]. Journal of Hazardous Materials, 2010, 178(1/2/3): 489-498. |
6 | Lu S Y, Yan J H, Li X D, et al. Effects of inorganic chlorine source on dioxin formation using fly ash from a fluidized bed incinerator[J]. Journal of Environmental Sciences, 2007, 19(6): 756-761. |
7 | Lu P, Huang Q X, Bourtsalas A C, et al. Review on fate of chlorine during thermal processing of solid wastes[J]. Journal of Environmental Sciences, 2019, 78: 13-28. |
8 | 章骅, 于思源, 邵立明, 等. 烟气净化工艺和焚烧炉类型对生活垃圾焚烧飞灰性质的影响[J]. 环境科学, 2018, 39(1): 467-476. |
Zhang H, Yu S Y, Shao L M, et al. Influence of air pollution control (APC) systems and furnace type on the characteristics of APC residues from municipal solid waste incinerators[J]. Environmental Science, 2018, 39(1): 467-476. | |
9 | Wang P, Hu Y, Cheng H F. Municipal solid waste (MSW) incineration fly ash as an important source of heavy metal pollution in China[J]. Environmental Pollution, 2019, 252: 461-475. |
10 | Renou S, Givaudan J G, Poulain S, et al. Landfill leachate treatment: review and opportunity[J]. Journal of Hazardous Materials, 2008, 150(3): 468-493. |
11 | Kjeldsen P, Barlaz M A, Rooker A P, et al. Present and long-term composition of MSW landfill leachate: a review[J]. Critical Reviews in Environmental Science and Technology, 2002, 32(4): 297-336. |
12 | Beníšek M, Kukučka P, Mariani G, et al. Dioxins and dioxin-like compounds in composts and digestates from European countries as determined by the in vitro bioassay and chemical analysis[J]. Chemosphere, 2015, 122: 168-175. |
13 | Wang H, Ge D D, Cheng Z W, et al. Improved understanding of dissolved organic matter transformation in concentrated leachate induced by hydroxyl radicals and reactive chlorine species[J]. Journal of Hazardous Materials, 2020, 387: 121702. |
14 | Nasrullah M, Vainikka P, Hannula J, et al. Elemental balance of SRF production process: solid recovered fuel produced from municipal solid waste[J]. Waste Management and Research, 2016, 34(1): 38-46. |
15 | Zhou H, Meng A H, Long Y Q, et al. An overview of characteristics of municipal solid waste fuel in China: physical, chemical composition and heating value[J]. Renewable and Sustainable Energy Reviews, 2014, 36: 107-122. |
16 | Becidan M, Sørum L, Lindberg D. Impact of municipal solid waste (MSW) quality on the behavior of alkali metals and trace elements during combustion: a thermodynamic equilibrium analysis[J]. Energy & Fuels, 2010, 24(6): 3446-3455. |
17 | Watanabe N, Yamamoto O, Sakai M, et al. Combustible and incombustible speciation of Cl and S in various components of municipal solid waste[J]. Waste Management, 2004, 24(6): 623-632. |
18 | 卿山, 王华, 吴桢芬, 等. 城市垃圾中生物质在热分析仪中燃烧的动力学模型研究[J]. 环境污染与防治, 2005, 27(7): 493-497. |
Qing S, Wang H, Wu Z F, et al. Study on characteristics of combustion of municipal solid waste with thermal analyzers[J]. Environmental Pollution & Control, 2005, 27(7): 493-497. | |
19 | Silva R B, Fragoso R, Sanches C, et al. Which chlorine ions are currently being quantified as total chlorine on solid alternative fuels?[J]. Fuel Processing Technology, 2014, 128: 61-67. |
20 | Rahim M U, Gao X P, Wu H W. A method for the quantification of chlorine in low-rank solid fuels[J]. Energy & Fuels, 2013, 27(11): 6992-6999. |
21 | Yang Z Z, Tian S C, Ji R, et al. Effect of water-washing on the co-removal of chlorine and heavy metals in air pollution control residue from MSW incineration[J]. Waste Management, 2017, 68: 221-231. |
22 | Hwang I H, Matsuto T, Tanaka N. Water-soluble characteristics of chlorine in char derived from municipal solid wastes[J]. Waste Management, 2006, 26(6): 571-579. |
23 | Chen W S, Chang F C, Shen Y H, et al. Removal of chloride from MSWI fly ash[J]. Journal of Hazardous Materials, 2012, 237/238: 116-120. |
24 | Pereira É R, Welz B, Lopez A H D, et al. Strontium mono-chloride—a new molecule for the determination of chlorine using high-resolution graphite furnace molecular absorption spectrometry and direct solid sample analysis[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2014, 102: 1-6. |
25 | Knudsen J N, Jensen P A, Dam-Johansen K. Transformation and release to the gas phase of Cl, K, and S during combustion of annual biomass[J]. Energy & Fuels, 2004, 18(5): 1385-1399. |
26 | Ma W C, Wenga T, Frandsen F J, et al. The fate of chlorine during MSW incineration: vaporization, transformation, deposition, corrosion and remedies[J]. Progress in Energy and Combustion Science, 2020, 76: 100789. |
27 | 刘正, 周向东. 锦纶织物耐久性阻燃剂的合成及应用[J]. 印染助剂, 2020, 37(9): 28-31. |
Liu Z, Zhou X D. Synthesis and application of durable flame retardant for nylon fabric[J].Textile Auxiliaries, 2020, 37(9): 28-31. | |
28 | 谭飞, 黄成, 纪柏林, 等. 卤胺抗菌剂稳定乳液的制备及整理织物抗菌性能[J]. 印染, 2020, 46(1): 5-10. |
Tan F, Huang C, Ji B L, et al. Preparation of stabilized halogen antibacterial emulsion and the antibacterial properties of finished fabrics[J].China Dyeing & Finishing, 2020, 46(1): 5-10. | |
29 | Aracil I, Font R, Conesa J A. Semivolatile and volatile compounds from the pyrolysis and combustion of polyvinyl chloride[J]. Journal of Analytical and Applied Pyrolysis, 2005, 74(1/2): 465-478. |
30 | Yu J, Sun L S, Ma C, et al. Thermal degradation of PVC: a review[J]. Waste Management, 2016, 48: 300-314. |
31 | Kikuchi R, Kukacka J, Raschman R. Grouping of mixed waste plastics according to chlorine content[J]. Separation and Purification Technology, 2008, 61(1): 75-81. |
32 | Kanters M J, van Nispen R, Louw R, et al. Chlorine input and chlorophenol emission in the lab-scale combustion of municipal solid waste[J]. Environmental Science & Technology, 1996, 30(7): 2121-2126. |
33 | Aho M, Ferrer E. Importance of coal ash composition in protecting the boiler against chlorine deposition during combustion of chlorine-rich biomass[J]. Fuel, 2005, 84(2/3): 201-212. |
34 | Du S L, Wang X H, Shao J G, et al. Releasing behavior of chlorine and fluorine during agricultural waste pyrolysis[J]. Energy, 2014, 74: 295-300. |
35 | Gui B, Qiao Y, Wan D, et al. Nascent tar formation during polyvinylchloride (PVC) pyrolysis[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2321-2329. |
36 | Wey M Y, Chen J C, Wu H Y, et al. Formations and controls of HCl and PAHs by different additives during waste incineration[J]. Fuel, 2006, 85(5/6): 755-763. |
37 | López A, de Marco I, Caballero B M, et al. Dechlorination of fuels in pyrolysis of PVC containing plastic wastes[J]. Fuel Processing Technology, 2011, 92(2): 253-260. |
38 | Wang Z Q, Huang H T, Li H B, et al. HCl formation from RDF pyrolysis and combustion in a spouting-moving bed reactor[J]. Energy & Fuels, 2002, 16(3): 608-614. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[3] | Keke SHAO, Mengjie SONG, Zhengyong JIANG, Xuan ZHANG, Long ZHANG, Runmiao GAO, Zekang ZHEN. Experimental study on the formation and distribution of trapped air bubbles in horizontal ice slice [J]. CIESC Journal, 2023, 74(S1): 161-164. |
[4] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[5] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[6] | Hao WANG, Zhenlei WANG. Model simplification strategy of cracking furnace coking based on adaptive spectroscopy method [J]. CIESC Journal, 2023, 74(9): 3855-3864. |
[7] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[8] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[9] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[10] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[11] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[12] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[13] | Zhihang ZHENG, Junnan MA, Zihan YAN, Chunxi LU. Study on the pressure pulsation characteristics in jet influence zone of riser [J]. CIESC Journal, 2023, 74(6): 2335-2350. |
[14] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[15] | Xinyue WANG, Junjie WANG, Sixian CAO, Cui WANG, Lingkun LI, Hongyu WU, Jing HAN, Hao WU. Effect of glass primary container surface modification on monoclonal antibody aggregates induced by mechanical stress [J]. CIESC Journal, 2023, 74(6): 2580-2588. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 185
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 510
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||