CIESC Journal ›› 2022, Vol. 73 ›› Issue (1): 222-231.DOI: 10.11949/0438-1157.20210596
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Zuohua LIU1,3(),Yilin ZHOU1,3,Xia XIONG1,3,Changyuan TAO1,3,Yundong WANG2
Received:
2021-06-29
Revised:
2021-08-08
Online:
2022-01-18
Published:
2022-01-05
Contact:
Zuohua LIU
刘作华1,3(),周毅林1,3,熊黠1,3,陶长元1,3,王运东2
通讯作者:
刘作华
作者简介:
刘作华(1973—),男,博士,教授,基金资助:
CLC Number:
Zuohua LIU, Yilin ZHOU, Xia XIONG, Changyuan TAO, Yundong WANG. Chaotic mixing intensification and flow field structure instability in stirred reactor by counter-flow pitched-blade turbine[J]. CIESC Journal, 2022, 73(1): 222-231.
刘作华, 周毅林, 熊黠, 陶长元, 王运东. 逆流桨强化搅拌槽内流体混沌混合及流场结构失稳研究[J]. 化工学报, 2022, 73(1): 222-231.
Add to citation manager EndNote|Ris|BibTeX
13 | Liu Z H, Sun R X, Wang Y D, et al. Chaotic mixing intensified by rigid-flexible coupling impeller[J]. CIESC Journal, 2014, 65(9): 3340-3349. |
14 | 刘作华, 曾启琴, 杨鲜艳, 等. 刚柔组合搅拌桨与刚性桨调控流场结构的对比[J]. 化工学报, 2014, 65(6): 2078-2084. |
Liu Z H, Zeng Q Q, Yang X Y, et al. Flow field structure with rigid-flexible impeller and rigid impeller[J]. CIESC Journal, 2014, 65(6): 2078-2084. | |
15 | 刘作华, 陈超, 刘仁龙, 等. 刚柔组合搅拌桨强化搅拌槽中流体混沌混合[J]. 化工学报, 2014, 65(1): 61-70. |
Liu Z H, Chen C, Liu R L, et al. Chaotic mixing enhanced by rigid-flexible impeller in stirred vessel[J]. CIESC Journal, 2014, 65(1):61-70. | |
16 | 杨锋苓, 张翠勋, 苏腾龙. 柔性Rushton搅拌桨的功耗与流场特性研究[J]. 化工学报, 2020, 71(2): 614-625. |
Yang F L, Zhang C X, Su T L. Power and flow characteristics of flexible-blade Rushton impeller[J]. CIESC Journal, 2020, 71(2): 614-625. | |
17 | 杨锋苓, 张翠勋, 李美婷. 柔性Rushton搅拌桨混合性能的实验研究[J]. 化工学报, 2020, 71(2): 626-632. |
Yang F L, Zhang C X, Li M T. Experimental study on mixing characteristics of flexible-blade Rushton impeller[J]. CIESC Journal, 2020, 71(2): 626-632. | |
18 | 张廷松,张超,王永才, 等. 一种分解槽搅拌装置的桨叶: 2848823 [P]. 2006-12-20. |
Zhang T S, Zhang C, Wang Y C, et al. The utility model relates to a paddle blade of a decomposing tank agitator: 2848823 [P]. 2006-12-20. | |
19 | 周勇军, 蒋宾伟, 卢源, 等. 内加热搅拌釜中改进型INTER-MIG桨的传热性能[J]. 过程工程学报, 2014, 14(3): 377-382. |
1 | Zhu Q, Xiao H, Chen A, et al. CFD study on double-to single-loop flow pattern transition and its influence on macro mixing efficiency in fully baffled tank stirred by a Rushton turbine[J]. Chinese Journal of Chemical Engineering, 2019, 27(5): 993-1000. |
2 | Pukkella A K, Vysyaraju R, Tammishetti V, et al. Improved mixing of solid suspensions in stirred tanks with interface baffles: CFD simulation and experimental validation[J]. Chemical Engineering Journal, 2019, 358: 621-633. |
3 | Gu D, Ye M, Wang X, et al. Numerical investigation on mixing characteristics of floating and sinking particles in a stirred tank with fractal impellers[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 116: 51-61. |
4 | Hoseini S S, Najafi G, Ghobadian B, et al. Impeller shape-optimization of stirred-tank reactor: CFD and fluid structure interaction analyses[J]. Chemical Engineering Journal, 2021,413: 127497. |
5 | Basavarajappa M, Miskovic S. CFD simulation of single-phase flow in flotation cells: effect of impeller blade shape, clearance, and Reynolds number[J]. International Journal of Mining Science and Technology, 2019, 29(5): 657-669. |
6 | Ameur H. Newly modified curved-bladed impellers for process intensification: energy saving in the agitation of Hershel-Bulkley fluids[J]. Chemical Engineering and Processing-Process Intensification, 2020, 154: 108009. |
7 | Li Z, Bao Y, Gao Z. PIV experiments and large eddy simulations of single-loop flow fields in Rushton turbine stirred tanks [J]. Chemical Engineering Science, 2011, 66(6): 1219-1231. |
8 | Bouremel Y, Yianneskis M, Ducci A. Three-dimensional deformation dynamics of trailing vortex structures in a stirred vessel[J]. Industrial & engineering chemistry research, 2009, 48(17): 8148-8158. |
9 | Li Z, Hu M, Bao Y, et al. Particle image velocimetry experiments and large eddy simulations of merging flow characteristics in dual Rushton turbine stirred tanks[J]. Industrial & engineering chemistry research, 2012, 51(5): 2438-2450. |
10 | Mule G M, Kulkarni A A. Mixing of medium viscosity liquids in a stirred tank with fractal impeller[J]. Theoretical Foundations of Chemical Engineering, 2016, 50(6): 914-921. |
11 | Jia H, Wang F, Wu J, et al. CFD research on the influence of 45° disk turbine agitator blade diameter on the solid-liquid mixing characteristics of the cone-bottom stirred tank[J]. Arabian Journal for Science and Engineering, 2020, 45(7): 5741-5749. |
12 | Ameur H. Some modifications in the Scaba 6SRGT impeller to enhance the mixing characteristics of Hershel-Bulkley fluids[J]. Food and Bioproducts Processing, 2019, 117: 302-309. |
13 | 刘作华, 孙瑞祥, 王运东, 等. 刚-柔组合桨强化流体混沌混合[J]. 化工学报, 2014, 65(9): 3340-3349. |
19 | Zhou Y J, Jiang B W, Lu Y, et al. Heat transfer performance of improved INTER-MIG impeller in a stirred tank with inner-heating coil[J]. The Chinese Journal of Process Engineering, 2014, 14(3): 377-382. |
20 | 林伟振, 周勇军, 王璐璐, 等. 改进型INTER-MIG桨尾涡结构的PIV试验与模拟[J]. 排灌机械工程学报, 2021, 39(2): 158-164. |
Lin W Z, Zhou Y J, Wang L L, et al. PIV experiment and numerical simulation of trailing vortex structure of improved INTER-MIG impeller[J]. Journal of Drainage and Irrigation Machinery Engineering, 2021, 39(2): 158-164. | |
21 | 王璐璐, 周勇军, 鲍苏洋, 等.改进型INTER-MIG桨搅拌槽内流场的 PIV 实验[J]. 过程工程学报, 2017, 17(3): 447-452. |
Wang L L, Zhou Y J, Bao S Y, et al. PIV experiments on flow field of stirred tank with improved INTER-MIG impeller[J]. The Chinese Journal of Process Engineering, 2017, 17(3): 447-452. | |
22 | Li X, Zhao H, Zhang Z, et al. Numerical optimization for blades of intermig impeller in solid–liquid stirred tank[J]. Chinese Journal of Chemical Engineering, 2021, 29: 57-66. |
23 | Zhao H, Zhao X, Zhang L, et al. Experimental study on scale-up of solid-liquid stirred tank with an intermig impeller[J]. JOM, 2017, 69(2): 301-306. |
24 | 徐昊鹏, 周勇军, 何华, 等.双层改进型Inter-Mig桨对带内盘管搅拌釜内流场性能影响[J]. 石油化工设备, 2019, 48(4): 15-21. |
Xu H P, Zhou Y J, He H, et al. Effect of double layer improved Inter-Mig impeller on flow field performance in stirred tank with inner coil[J]. Petro-Chemical Equipment, 2019, 48(4): 15-21. | |
25 | Wang L, Zhou Y, Chen Z. Investigation of heat transfer efficiency of improved intermig impellers in a stirred tank equipped with vertical tubes[J]. International Journal of Chemical Reactor Engineering, 2020, 18(3). |
26 | Szalai E S, Arratia P, Johnson K, et al. Mixing analysis in a tank stirred with Ekato Intermig® impellers[J]. Chemical Engineering Science, 2004, 59(18): 3793-3805. |
27 | 刘作华, 魏红军, 熊黠, 等. 错位刚柔桨强化搅拌槽内流体混合实验及数值模拟[J]. 化工学报, 2020, 71(10): 4621-4631. |
Liu Z H, Wei H J, Xiong X, et al. Experiment and numerical simulation of chaotic mixing performance enhanced by perturbed rigid-flexible impeller in stirred tank[J]. CIESC Journal, 2020, 71(10): 4621-4631. | |
28 | Ascanio G. Mixing time in stirred vessels: a review of experimental techniques[J]. Chinese Journal of Chemical Engineering, 2015, 23(7): 1065-1076. |
29 | Versteeg H K, Malalasekera W. An Introduction to Computational Fluid Dynamics: the Finite Volume Method[M]//England: Pearson Education Limited, 2007:503. |
30 | Feng Z, Sun Y, Liu X, et al. Design and application of new impeller-type wax-proof device based on speed-increasing wax-proof mechanism[J]. Journal of Petroleum Science and Engineering, 2021, 200: 108392. |
31 | Rosenstein M T, Collins J J, Luca C J D, et al. A practical method for calculating largest Lyapunov exponents from small data sets[J]. Physica D: Nonlinear Phenomena, 1993, 65(1):117-134. |
32 | 白春江, 崔万照, 李军.基于混沌理论的无源互调功率预测研究[J]. 电子与信息学报, 2021, 43(1): 124-130. |
Bai C J, Cui W Z, Li J. Prediction of passive intermodulation level based on chaos method[J]. Journal of Electronics & Information Technology, 2021, 43(1): 124-130. | |
33 | 陈敏, 叶晓舟.时间序列的混沌识别方法研究[J]. 电脑与信息技术, 2008, 16(6): 17-19, 26. |
Chen M, Ye X C. Research on the chaotic time series identification method[J]. Computer and Information Technology, 2008, 16(6): 17-19, 26. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||