CIESC Journal ›› 2022, Vol. 73 ›› Issue (2): 914-922.DOI: 10.11949/0438-1157.20210907
• Energy and environmental engineering • Previous Articles Next Articles
Ziteng LUO1(),Qiucheng ZHOU2,Yulu WANG1,Yinshang XI2,Anning ZHOU1,Fuxin CHEN1()
Received:
2021-07-01
Revised:
2021-10-15
Online:
2022-02-18
Published:
2022-02-05
Contact:
Fuxin CHEN
罗紫藤1(),周秋成2,王雨露1,席引尚2,周安宁1,陈福欣1()
通讯作者:
陈福欣
作者简介:
罗紫藤(1995—),女,硕士研究生,基金资助:
CLC Number:
Ziteng LUO, Qiucheng ZHOU, Yulu WANG, Yinshang XI, Anning ZHOU, Fuxin CHEN. Study on capture reaction of free radicals in pyrolysis reaction based on Py-GC/MS[J]. CIESC Journal, 2022, 73(2): 914-922.
罗紫藤, 周秋成, 王雨露, 席引尚, 周安宁, 陈福欣. 基于Py-GC/MS研究热解反应中自由基的捕获反应[J]. 化工学报, 2022, 73(2): 914-922.
Add to citation manager EndNote|Ris|BibTeX
仪器与设备 | 型号 | 生产厂家 |
---|---|---|
电子天平 | CPA225D | 赛多利斯科学仪器 (北京)有限公司 |
气相色谱-质谱联用仪 | 7890A/5975C型 | 美国Agilent公司 |
热裂解仪 | Py-2020is | 日本FRONTIER LAB |
Table 1 The main experimental instruments and equipments
仪器与设备 | 型号 | 生产厂家 |
---|---|---|
电子天平 | CPA225D | 赛多利斯科学仪器 (北京)有限公司 |
气相色谱-质谱联用仪 | 7890A/5975C型 | 美国Agilent公司 |
热裂解仪 | Py-2020is | 日本FRONTIER LAB |
模型化合物 | 加入量/mg | 同位素 示踪剂 | 加入量/μl | 自由基 捕获剂 | 加入量/mg |
---|---|---|---|---|---|
1-萘甲醇 | 0.01 | 水 | 2 | — | — |
2 | — | — | |||
2 | — | — | |||
水 | 2 | TCNQ | 0.01 | ||
2 | TCNQ | 0.01 | |||
2 | TCNQ | 0.01 |
Table 2 Experimental sample
模型化合物 | 加入量/mg | 同位素 示踪剂 | 加入量/μl | 自由基 捕获剂 | 加入量/mg |
---|---|---|---|---|---|
1-萘甲醇 | 0.01 | 水 | 2 | — | — |
2 | — | — | |||
2 | — | — | |||
水 | 2 | TCNQ | 0.01 | ||
2 | TCNQ | 0.01 | |||
2 | TCNQ | 0.01 |
5 | ||
6 |
Table 3 The main pyrolysis product of 1-naphthyl methanol and H2O
5 | ||
6 |
1 | 刘俊杰, 武瑞瑞, 袁悦, 等. 煤热解工艺现状及发展趋势[J]. 化工技术与开发, 2020, 49(12): 23-27. |
Liu J J, Wu R R, Yuan Y, et al. Current status and development trend of coal pyrolysis process[J]. Technology & Development of Chemical Industry, 2020, 49(12): 23-27. | |
2 | 吴志强, 张博, 杨伯伦. 生物质化学链转化技术研究进展[J]. 化工学报, 2019, 70(8): 2835-2853. |
Wu Z Q, Zhang B, Yang B L. Research progress on biomass chemical-looping conversion technology[J]. CIESC Journal, 2019, 70(8): 2835-2853. | |
3 | Djandja O S, Wang Z C, Duan P G, et al. Hydrotreatment of pyrolysis oil from waste tire in tetralin for production of high-quality hydrocarbon rich fuel[J]. Fuel, 2021, 285: 119185. |
4 | 毕山松, 郭啸晋, 王波, 等. 重质有机资源热解过程中自由基诱导反应的密度泛函理论研究[J]. 燃料化学学报, 2021, 49(5):684-693. |
Bi S S, Guo X J, Wang B, et al. A DFT simulation on induction reactions involved radicals during pyrolysis of heavy organics[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 684-693. | |
5 | 石剑, 李术元, 马跃. 爱沙尼亚油页岩及其热解产物的电子顺磁共振研究[J]. 燃料化学学报, 2018, 46(1): 1-7. |
Shi J, Li S Y, Ma Y. Electron paramagnetic resonance study of Estonia oil shale and its pyrolysis products[J]. Journal of Fuel Chemistry and Technology, 2018, 46(1): 1-7. | |
6 | Richter H, Howard J B. Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways[J]. Progress in Energy and Combustion Science, 2000, 26(4/5/6): 565-608. |
7 | Liu X C, Cui P, Ling Q, et al. A review on co-pyrolysis of coal and oil shale to produce coke[J]. Frontiers of Chemical Science and Engineering, 2020, 14(4): 504-512. |
8 | Wang W, Ma Y, Li S Y, et al. Effect of temperature on the EPR properties of oil shale pyrolysates[J]. Energy & Fuels, 2016, 30(2): 830-834. |
9 | 李刚. 煤热解中间体和自由基表征及反应机理研究[D]. 大连: 大连理工大学, 2015. |
Li G. Characterization of coal pyrolysis intermediates and free radicals and research on reaction mechanism[D]. Dalian: Dalian University of Technology, 2015. | |
10 | 孔令浩. 类煤结构模型化合物的热解研究[D]. 大连: 大连理工大学, 2015. |
Kong L H. Pyrolysis study of coal-based model compounds[D]. Dalian: Dalian University of Technology, 2015. | |
11 | Wang S Z, Fan X, Zheng A L, et al. Evaluation of atmospheric solids analysis probe mass spectrometry for the analysis of coal-related model compounds[J]. Fuel, 2014, 117: 556-563. |
12 | 成茂, 王胜春, 张德祥. 煤转化过程自由基研究进展[J]. 煤炭转化, 2012, 35(4): 94-98. |
Cheng M, Wang S C, Zhang D X. Research progress on free radicals in coal conversion process[J]. Coal Conversion, 2012, 35(4): 94-98. | |
13 | Morgan T J, Kandiyoti R. Pyrolysis of coals and biomass: analysis of thermal breakdown and its products[J]. Chemical Reviews, 2014, 114(3): 1547-1607. |
14 | 王政, 张兴华, 张逦嘉, 等. 大气颗粒物中环境持久性自由基的电子顺磁共振检测方法[J]. 环境化学, 2020, 39(2): 317-325. |
Wang Z, Zhang X H, Zhang L J, et al. Detection of environmentally persistent free radicals in atmospheric particulate matter by electron paramagnetic resonance[J]. Environmental Chemistry, 2020, 39(2): 317-325. | |
15 | 龙盛京, 石建庆, 谢云峰. 流动注射邻菲啰啉化学发光体系测定羟自由基[J]. 分析试验室, 2006, 25(7): 35-38. |
Long S J, Shi J Q, Xie Y F. Detection of hydroxym radicals by flow injection phenanthroline chemiluminescence system[J]. Chinese Journal of Analysis Laboratory, 2006, 25(7): 35-38. | |
16 | 王织云, 肖怀秋. 羟基自由基测定技术研究进展[J]. 广西轻工业, 2009, 25(6): 23-24. |
Wang Z Y, Xiao H Q. Research progress of determination technology of hydroxyl radical[J]. Guangxi Journal of Light Industry, 2009, 25(6): 23-24. | |
17 | Lin Y M, Lu G P, Wang R K, et al. Radical route to 1, 4-benzothiazine derivatives from 2-aminobenzenethiols and ketones under transition-metal-free conditions[J]. Organic Letters, 2016, 18(24): 6424-6427. |
18 | 仲晓星, 王德明, 徐永亮, 等. 煤氧化过程中的自由基变化特性[J]. 煤炭学报, 2010, 35(6): 960-963. |
Zhong X X, Wang D M, Xu Y L, et al. The variation characteristics of free radicals in coal oxidation[J]. Journal of China Coal Society, 2010, 35(6): 960-963. | |
19 | 韩瑶, 李佳隆, 杨亚磊, 等. 二甲基亚砜捕获-高效液相色谱法测定羟基自由基[J]. 分析科学学报, 2021, 37(2): 177-182. |
Han Y, Li J L, Yang Y L, et al. Determination of hydroxyl radicals by dimethyl sulfoxide trapping-high performance liquid chromatography[J]. Journal of Analytical Science, 2021, 37(2): 177-182. | |
20 | 王婕, 张玉龙, 王俊峰, 等. 无机盐类阻化剂和自由基捕获剂对煤自燃的协同抑制作用[J]. 煤炭学报, 2020, 45(12): 4132-4143. |
Wang J, Zhang Y L, Wang J F, et al. Synergistic inhibition effect of inorganic salt inhibitor and free radical scavenger on coal spontaneous combustion[J]. Journal of China Coal Society, 2020, 45(12): 4132-4143. | |
21 | 陈军超. TEMPO捕获过氧自由基的机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
Chen J C. Study on the mechanism of TEMPO capturing peroxy free radicals[D]. Harbin: Harbin Institute of Technology, 2018. | |
22 | Zhou Y, Li L, Jin L J, et al. Pyrolytic behavior of coal-related model compounds connected with C—C bridged linkages by in situ pyrolysis vacuum ultraviolet photoionization mass spectrometry[J]. Fuel, 2019, 241: 533-541. |
23 | Chen F X, Yan B B, Liu N, et al. Bimetallic oriented catalytic fast pyrolysis of lignin research based on Py-GC/MS[J]. Biomass Conversion and Biorefinery, 2020, 10(4): 1315-1325. |
24 | Li G S, Dong X M, Fan X, et al. Evaluation of coal-related model compounds using tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2018, 32(16): 1462-1472. |
25 | Li W T, Wei X Y, Li X K, et al. Catalytic hydroconversion of lignite-related model compounds over difunctional Ni-Mg2Si/γ-Al2O3[J]. Fuel, 2017, 200: 208-217. |
26 | Yan J C, Jiao H R, Li Z K, et al. Kinetic analysis and modeling of coal pyrolysis with model-free methods[J]. Fuel, 2019, 241: 382-391. |
27 | Li L, Fan H J, Hu H Q. A theoretical study on bond dissociation enthalpies of coal based model compounds[J]. Fuel, 2015, 153: 70-77. |
28 | Li G, Li L, Jin L J, et al. Methyl substitution effect in pyrolysis of coal-based model compound isomers[J]. Fuel Processing Technology, 2018, 178: 371-378. |
29 | Kong L H, Li G, Jin L J, et al. Pyrolysis behaviors of two coal-related model compounds on a fixed-bed reactor[J]. Fuel Processing Technology, 2015, 129: 113-119. |
30 | Chen F X, Hou B B, Chen S Y, et al. Biochemicals distribution and the collaborative pyrolysis study from three main components of Helianthus annuus stems based on Py-GC/MS[J]. Renewable Energy, 2017, 114: 960-967. |
31 | Chen F X, Gong P, Zhang H K, et al. Biomass pyrolysis of Helianthus annuus stems: qualitative and quantitative study based on Py-GC/MS[J]. BioResources, 2016, 11(4): 8589-8614. |
32 | Wang L L, Pan T Y, Liu P, et al. Hydrogen transfer route during hydrothermal treatment of lignite using the isotope tracer method and improving the pyrolysis tar yield[J]. Energy & Fuels, 2016, 30(6): 4562-4569. |
33 | He T, Zhang Y M, Zhu Y N, et al. Pyrolysis mechanism study of lignin model compounds by synchrotron vacuum ultraviolet photoionization mass spectrometry[J]. Energy & Fuels, 2016, 30(3): 2204-2208. |
34 | Jiang G B, Xu L, Cao F L, et al. Electron paramagnetic resonance(EPR)studies on free radical scavenging capacity of EGB and EGB cigarette[J]. Spectroscopy and Spectral Analysis, 2017, 37(4): 1322-1328. |
35 | Rajib A, Saadeh S, Katawal P, et al. Enhancing biomass value chain by utilizing biochar as a free radical scavenger to delay ultraviolet aging of bituminous composites used in outdoor construction[J]. Resources, Conservation and Recycling, 2021, 168: 105302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||