CIESC Journal ›› 2021, Vol. 72 ›› Issue (12): 5904-5927.DOI: 10.11949/0438-1157.20211278
• Reviews and monographs • Previous Articles Next Articles
Zhuang WANG1(),Xiao LYU1,Yuanyuan SHAO1(),Jesse ZHU2()
Received:
2021-09-03
Revised:
2021-11-05
Online:
2021-12-22
Published:
2021-12-05
Contact:
Yuanyuan SHAO,Jesse ZHU
通讯作者:
邵媛媛,祝京旭
作者简介:
王荘(1997—),男,硕士研究生,CLC Number:
Zhuang WANG, Xiao LYU, Yuanyuan SHAO, Jesse ZHU. Early exploration of fluidization theory and its inspiration to the future[J]. CIESC Journal, 2021, 72(12): 5904-5927.
王荘, 吕潇, 邵媛媛, 祝京旭. 流态化的往昔寻觅及未来启示[J]. 化工学报, 2021, 72(12): 5904-5927.
Add to citation manager EndNote|Ris|BibTeX
1 | Brown G. Fluidization of Solids[M]// Unit Operations. Hoboken: Wiley, 1950: 269-274. |
2 | 宋应星. 明本天工开物[M]. 影印本. 北京: 国家图书馆出版社, 2019. |
Song Y X. Exploitation of the Works of Nature[M]. Beijing: National Library of China Publishing House, 2019. | |
3 | 郭慕孙, 李洪钟. 流态化手册[M]. 北京: 化学工业出版社, 2008: 1-6. |
Kwauk M, Li H Z. Handbook of Fluidization[M]. Beijing: Chemical Industry Press, 2008: 1-6. | |
4 | Agricola G. De Re Metallica[M]. Hoover H C, Hoover L H, trans. New York: Dover Publications, Inc., 1950. |
5 | Cui H P, Grace J R. Fluidization of biomass particles: a review of experimental multiphase flow aspects[J]. Chemical Engineering Science, 2007, 62(1/2): 45-55. |
6 | Ommen J R, Valverde J M, Pfeffer R. Fluidization of nanopowders: a review[J]. Journal of Nanoparticle Research, 2012, 14(3): 1-29. |
7 | Wang J Y, Shao Y Y, Yan X L, et al. Review of (gas)-liquid-solid circulating fluidized beds as biochemical and environmental reactors[J]. Chemical Engineering Journal, 2020, 386: 121951. |
8 | 金涌.概论[M]//金涌,祝京旭,汪展文,等. |
流态化工程原理. 北京: 清华大学出版社, 2001: 1-15. | |
Jin Y. Overview[M]//Jin Y, Zhu J X, Wang Z W, et al. Fluidization Engineering Principles. Beijing: Tsinghua University Press, 2001: 1-15. | |
9 | Wilhelm R H, Kwauk M. Fluidization of solid particles[J]. Chemical Engineering Progress, 1948, 44(3): 201-218. |
10 | Liu Y P, Peng J H, Kansha Y, et al. Novel fluidized bed dryer for biomass drying[J]. Fuel Processing Technology, 2014, 122: 170-175. |
11 | Amjadi O, Tahmasebpoor M. Improving fluidization behavior of cohesive Ca(OH)2 adsorbent using hydrophilic silica nanoparticles: parametric investigation[J]. Particuology, 2018, 40: 52-61. |
12 | Alnaief M, Antonyuk S, Hentzschel C M, et al. A novel process for coating of silica aerogel microspheres for controlled drug release applications[J]. Microporous and Mesoporous Materials, 2012, 160: 167-173. |
13 | Ma K Y, Sun X L, Shao Y Y, et al. Hydrodynamic characteristics of bubble-induced three-phase inverse fluidized bed (BIFB)[J]. Chemical Engineering Science, 2019, 209: 115177. |
14 | Zhang X W, Zhou Y, Zhu J. Enhanced fluidization of group A particles modulated by group C powder[J]. Powder Technology, 2021, 377: 684-692. |
15 | Shaul S, Rabinovich E, Kalman H. Generalized flow regime diagram of fluidized beds based on the height to bed diameter ratio[J]. Powder Technology, 2012, 228: 264-271. |
16 | Sun Z N, Zhu J. A consolidated flow regime map of upward gas fluidization[J]. AIChE Journal, 2019, 65(9): e16672. |
17 | Xu X, Chen J, Luo Z F, et al. Fluidization characteristics of air dense medium agitated separation fluidized bed with different distributors[J]. Mineral Processing and Extractive Metallurgy Review, 2019, 40(5): 299-306. |
18 | Yang X L, Zhang Y D, Yang Y, et al. Fluidization of Geldart D type particles in a shallow vibrated gas-fluidized bed[J]. Powder Technology, 2017, 305: 333-339. |
19 | Driessen R T, Rick T, van der Linden J J Q, et al. Characterization of mass transfer in a shallow fluidized bed for adsorption processes: modeling and supporting experiments[J]. Chemical Engineering Journal, 2020, 388: 123931. |
20 | Wang X Y, Liu M Y, Yang Z G. Coupled model based on radiation transfer and reaction kinetics of gas-liquid-solid photocatalytic mini-fluidized bed[J]. Chemical Engineering Research and Design, 2018, 134: 172-185. |
21 | Blaszczuk A, Pogorzelec M, Shimizu T. Heat transfer characteristics in a large-scale bubbling fluidized bed with immersed horizontal tube bundles[J]. Energy, 2018, 162: 10-19. |
22 | Tawfik M H M, Refaat Diab M, Mohmed Abdelmotalib H. An experimental investigation of wall-bed heat transfer and flow characteristics in a swirling fluidized bed reactor[J]. Applied Thermal Engineering, 2019, 155: 501-507. |
23 | Davidson J F, Harrison D. Fluidization[M]. Waltham: Academic, 1971. |
24 | Kunii D, Levenspiel O. Fluidization Engineering[M]. New York: John Wiley & Sons, Inc., and Toppan Co., 1969 |
25 | 李洪钟, 郭慕孙. 回眸与展望流态化科学与技术[J]. 化工学报, 2013, 64(1): 52-62. |
Li H Z, Kwauk M. Review and prospect of fluidization science and technology[J]. CIESC Journal, 2013, 64(1): 52-62. | |
26 | Winkler F. German patent NO. 437970[P]. 1922. |
27 | Fan L S. Gas-Liquid-Solid Fluidization Engineering[M]. Boston: Butterworths, 1989. |
28 | 钱笑公. 温克勒气化法的特性和进展[J]. 煤炭化工设计, 1985, 13(1): 32-49. |
Qian X G. Characteristics and progress of Winkler gasification method[J]. Coal Chemical Design, 1985, 13(1): 32-49. | |
29 | 陈俊武, 曹汉昌. 催化裂化工艺与工程[M]. 北京: 中国石油化工出版社, 1995. |
Chen J W, Cao H C. Catalytic Cracking Process and Engineering[M]. Beijing: China Petrochemical Press, 1995. | |
30 | Squires A M, Kwauk M, Avidan A A. Fluid beds: at last, challenging two entrenched practices[J]. Science, 1985, 230(4732): 1329-1337. |
31 | Jahnig C E, Campbell D L, Martin H Z. History of fluidized solids development at exxon[M]//Fluidization. Boston, MA: Springer US, 1980: 3-24. |
32 | Abrahamsen A R, Geldart D. Behaviour of gas-fluidized beds of fine powders (Ⅰ): Homogeneous expansion[J]. Powder Technology, 1980, 26(1): 35-46. |
33 | Abrahamsen A R, Geldart D. Behaviour of gas-fluidized beds of fine powders (Ⅱ): Voidage of the dense phase in bubbling beds[J]. Powder Technology, 1980, 26(1): 47-55. |
34 | Abrahamsen A R, Geldart D. Behaviour of gas-fluidized beds of fine powders (Ⅲ): Effective thermal conductivity of a homogeneously expanded bed[J]. Powder Technology, 1980, 26(1): 57-65. |
35 | Yerushalmi J, Turner D H, Squires A M. The fast fluidized bed[J]. Industrial & Engineering Chemistry Process Design and Development, 1976, 15(1): 47-53. |
36 | Lewis W K, Gilliland E R, Bauer W C. Characteristics of fluidized particles[J]. Industrial & Engineering Chemistry, 1949, 41(6): 1104-1117. |
37 | Lapidus L, Elgin J C. Mechanics of vertical-moving fluidized systems[J]. AIChE Journal, 1957, 3(1): 63-68. |
38 | Elgin J C, Foust H C. Countercurrent flow of particles through moving continuous fluid[J]. Industrial & Engineering Chemistry, 1950, 42(6): 1127-1141. |
39 | Gilliland E R, Mason E A. Gas and solid mixing in fluidized beds[J]. Industrial & Engineering Chemistry, 1949, 41(6): 1191-1196. |
40 | Lewis W K, Gilliland E R, McBride G T. Gasification of carbon by carbon dioxide in fluidized powder bed[J]. Industrial & Engineering Chemistry, 1949, 41(6): 1213-1226. |
41 | Lewis W K, Gilliland E R, Reed W A. Reaction of methane with copper oxide in a fluidized bed[J]. Industrial & Engineering Chemistry, 1949, 41(6): 1227-1237. |
42 | Lewis W K, Gilliland E R, Glass W. Solid-catalyzed reaction in a fluidized bed[J]. AIChE Journal, 1959, 5(4): 419-426. |
43 | Toomey R D, Johnstone H F. Gaseous fluidization of solid particles[J]. Chemical Engineering Progress, 1952, 48: 220-225. |
44 | Davidson J F, Harrison D. Fluidized Particles[M]. Cambridge: Cambridge University Press, 1963. |
45 | Rowe P N, Wace P F. Gas-flow patterns in fluidized beds[J]. Nature, 1960, 188(4752): 737-738. |
46 | Rowe P N, Henwood G A. Drag forces in hydraulic model of a fluidized bed (Ⅰ)[J]. Transactions of the Institution of Chemical Engineers, 1961, 39: 43-54. |
47 | Rowe P N. Drag forces in hydraulic model of a fluidized bed (Ⅱ)[J]. Transactions of the Institution of Chemical Engineers, 1961, 39: 175-180. |
48 | Gilliland E R, Mason E A. Gas mixing in beds of fluidized solids[J]. Industrial & Engineering Chemistry, 1952, 44(1): 218-224. |
49 | Gilliland E R, Mason E A, Oliver R C. Gas-flow patterns in beds of fluidized solids[J]. Industrial & Engineering Chemistry, 1953, 45(6): 1177-1185. |
50 | Lewis W K, Gilliland E R, Paxton R R. Low-temperature oxidation of carbon[J]. Industrial & Engineering Chemistry, 1954, 46(6): 1327-1331. |
51 | Ergun S, Orning A A. Fluid flow through randomly packed columns and fluidized beds[J]. Industrial & Engineering Chemistry, 1949, 41(6): 1179-1184. |
52 | Ergun S. Fluid flow through packed columns[J]. Chemical Engineering Progress, 1952, 48(2): 89-94. |
53 | Leva M, Grummer M, Weintraub M. Introduction to fluidization[J]. Chemical Engineering Progress, 1948, 44(7): 511-520. |
54 | Richardson J F, Zaki W N. Sedimentation and fluidizations (Ⅰ)[J]. Transactions of the Institution of Chemical Engineers, 1954, 32: 35. |
55 | Wen C Y, Yu Y H. A generalized method for predicting the minimum fluidization velocity[J]. AIChE Journal, 1966, 12(3): 610-612. |
56 | Lewis E W, Bowerman E W. Fluidization of solid particles in liquids[J]. Chemical Engineering Progress, 1952, 48: 603-609. |
57 | Varadi T, Grace J R. High pressure fluidization in a two-dimensional bed[M]//Davidson J F, Keairrns D L. Fluidization. Cambridge: Cambridge University Press, 1978. |
58 | Romero J B, Johanson L N. Factors affecting fluidized bed quality[J]. Chemical Engineering Progress, Symposium Series, 1962, 58(38): 28-37. |
59 | Geldart D. Types of gas fluidization[J]. Powder Technology, 1973, 7(5): 285-292. |
60 | Appel F J, Elgin J C. Countercurrent extraction of benzoic acid between toluene and water[J]. Industrial & Engineering Chemistry, 1937, 29(4): 451-459. |
61 | Price B G, Lapidus L, Elgin J C. Mechanics of vertical moving fluidized systems (Ⅱ): Application to countercurrent operation[J]. AIChE Journal, 1959, 5(1): 93-97. |
62 | Struve D L, Lapidus L, Elgin J C. The mechanics of moving vertical fluidized systems (Ⅲ): Application to cocurrent countergravity[J]. The Canadian Journal of Chemical Engineering, 1958, 36(4): 141-152. |
63 | Hoffman R F, Lapidus L, Elgin J C. The mechanics of vertical moving fluidized systems (Ⅳ): Application to batch-fluidized systems with mixed particle sizes[J]. AIChE Journal, 1960, 6(2): 321-324. |
64 | Quinn J A, Lapidus L, Elgin J C. The mechanics of moving vertical fluidized systems (Ⅴ): Concurrent cogravity flow[J]. AIChE Journal, 1961, 7(2): 260-263. |
65 | Richardson J F, Meikle R A. Sedimentation and fluidization (Ⅲ): The sedimentation of uniform fine particles and two-component mixtures of solids[J]. Transactions of the Institution of Chemical Engineers, 1961, 39(5): 348-356. |
66 | Richardson J F, Meikle R A. Sedimentation and fluidization (Ⅳ): The sedimentation of uniform fine particles and two-component mixtures of solids[J]. Transactions of the Institution of Chemical Engineers, 1961, 39(5): 857-868. |
67 | Khan A R, Richardson J F. Fluid-particle interactions and flow characteristics of fluidized beds and settling suspensions of spherical particles[J]. Chemical Engineering Communications, 1989, 78(1): 111-130. |
68 | Beyaert B O, Lapidus L, Elgin J C. The mechanics of vertical moving liquid-liquid fluidized systems (Ⅱ): Countercurrent flow[J]. AIChE Journal, 1961, 7(1): 46-48. |
69 | Zenz F A. Two-phase fluid-solid flow[J]. Industrial & Engineering Chemistry, 1949, 41(12): 2801-2806. |
70 | Wilhelm R H, Valentine S. The fluidized bed—transition state in the vertical pneumatic transport of particles[J]. Industrial & Engineering Chemistry, 1951, 43: 1199-1203. |
71 | Mertes T S, Rhodes H B. Liquid particle behavior (Ⅰ)[J]. Chemical Engineering Progress, 1955, 51: 429-432. |
72 | Mertes T S, Rhodes H B. Liquid particle behavior (Ⅱ)[J]. Chemical Engineering Progress, 1955, 51: 517-522. |
73 | Zenz F A, Othmer D F. Fluidization and Fluid-particle Systems[M]. New York: Reinhold, 1960: 150. |
74 | 郭慕孙, 庄一安. 流态化-垂直系统中均匀球体和流体的运动[M]. 北京: 科学出版社, 1963: 26. |
Kwauk M, Zhuang Y A. Fluidization-Motion of Uniform Sphere and Fluid in Vertical System[M]. Beijing: Science Press, 1963: 26. | |
75 | Kwauk M. Generalized fluidization (Ⅰ): Steady-state motion[J]. Scientia Sinica, 1963, 12(4): 587-612. |
76 | Kwauk M. Generalized fluidization (Ⅱ): Accelerative motion with steady profiles[J]. Scientia Sinica, 1968, 13(9): 1477-1492. |
77 | Deemter J J, Laan E T. Momentum and energy balances for dispersed two-phase flow[J]. Applied Scientific Research, 1961, 10(1): 102-108. |
78 | Grace J R, Clift R. On the two-phase theory of fluidization[J]. Chemical Engineering Science, 1974, 29(2): 327-334. |
79 | 蔡平, 范良士. 气固密相流化床[M]//金涌, 祝京旭, 汪展文, 等. |
流态化工程原理. 北京: 清华大学出版社, 2001: 70-71. | |
Cai P, Fan L S. Gas-solid dense-phase fluidized beds[M]//Jin Y, Zhu J X, Wang Z W, et al. Fluidization Engineering Principles. Beijing: Tsinghua University Press, 2001: 70-71. | |
80 | Fan L S. Summary paper on fluidization and transport phenomena[J]. Powder Technology, 1996, 88(3): 245-253. |
81 | Fu Z J, Zhu J, Barghi S, et al. On the two-phase theory of fluidization for Geldart B and D particles[J]. Powder Technology, 2019, 354: 64-70. |
82 | Darton R C, Lanauze R D,Davidson J F, et al. Bubble growth due to coalescence in fluidized beds[J]. Transactions of the Institution of Chemical Engineers, 1977, 55(4): 274-280. |
83 | Orcutt J C, Carpenter B H. Bubble coalescence and the simulation of mass transport and chemical reaction in gas fluidized beds[J]. Chemical Engineering Science, 1971, 26(7): 1049-1064. |
84 | May W G. Fluidized-bed reactor studies[J]. Chemical Engineering Progress, 1959, 55(12): 49-56. |
85 | van Deemter J J. Mixing and contacting in gas-solid fluidized beds[J]. Chemical Engineering Science, 1961, 13(3): 143-154. |
86 | Kunii D, Levenspiel O. Bubbling bed model for flow of gas through a fluidized bed[J]. Industrial & Engineering Chemistry Fundamentals, 1968, 7(3): 446-452. |
87 | 袁谓康, 王静康, 费维扬, 等. 化学工程手册 [M]. 3版.北京: 化学工业出版社, 2019: 20-110. |
Yuan W K, Wang J K, Fei W Y, et al. Handbook of Chemical Engineering [M]. 3rd ed. Beijing: Chemical Industry Press, 2019: 20-110. | |
88 | Carman P C. Fluid flow through granular beds[J]. Chemical Engineering Research and Design, 1997, 75: S32-S48. |
89 | Burke S P, Plummer W B. Gas flow through packed columns[J]. Industrial & Engineering Chemistry, 1928, 20(11): 1196-1200. |
90 | Leva M. Fluidization[M]. McGraw-Hill, 1959. |
91 | Reynolds O. Papers on mechanical and physical subjects[J]. International Journal of Heat and Mass Transfer, 1969, 12(2): 129-136. |
92 | Kozeny J. Ueber kapillare Leitung des Wassers im Boden[J]. Stizungsber Akad Wiss Wien, 1927, 136: 271-306. |
93 | Ergun S. Pressure drop in blast furnace and in cupola[J]. Industrial & Engineering Chemistry, 1953, 45(2): 477-485. |
94 | Narsimhan G. On a generalized expression for prediction of minimum fluidization velocity[J]. AIChE Journal, 1965, 11(3): 550-554. |
95 | Wen C Y, Yu Y H. Mechanics of fluidization[J]. Chemical Engineering Progress, Symposium Series, 1966, 62(1): 100-111. |
96 | 祝京旭, 张辉. 流态化基础知识和流型分类[M]//金涌, 祝京旭, 汪展文, 等. |
流态化工程原理. 北京: 清华大学出版社, 2001: 20-23. | |
Zhu J X, Zhang H. Fundamentals of fluidization and classification of fluidization regimes[M]//Jin Y, Zhu J X, Wang Z W, et al. Fluidization Engineering Principles. Beijing: Tsinghua University Press, 2001: 20-23. | |
97 | 李洪钟. 流态化技术与计算机模拟[J]. 计算机与应用化学, 2008, 25(9): 1047-1052. |
Li H Z. Fluidization technology and computer simulation[J]. Computers and Applied Chemistry, 2008, 25(9): 1047-1052. | |
98 | 洪坤, 曹曼倩, 王文轩, 等. 甲醇制烯烃流化床内流化特性的多尺度CFD模拟[J]. 过程工程学报,2021,21(9):1012-1021. |
Hong K, Cao M Q, Wang W X, et al. Multi scale CFD simulation of fluidization characteristics in a fluidized bed for methanol to olefins [J]. Journal of Process Engineering,2021,21(9):1012-1021. | |
99 | Wang W, Li J H. Simulation of gas-solid two-phase flow by a multi-scale CFD approach—extension of the EMMS model to the sub-grid level[J]. Chemical Engineering Science, 2007, 62(1/2): 208-231. |
100 | 姚梅琴,岳君容,战金辉, 等. 内循环微型流化床流动特性[J]. 化工学报, 2017,68(10): 3717-3724. |
Yao M Q, Yue J R, Zhan J H, et al. Hydrodynamics of internally circulating micro fluidized bed [J]. CIESC Journal, 2017,68(10): 3717-3724.. | |
101 | 董晓赛, 孙述杰, 段振亚, 等. 流化床中气固两相流数值模拟技术研究进展[J]. 化工机械, 2021, 48(3): 326-331. |
Dong X S, Sun S J, Duan Z Y, et al. Research progress in numerical simulation technology of gas-solid flow in fluidized bed[J]. Chemical Engineering & Machinery, 2021, 48(3): 326-331. | |
102 | 张锴, Stefano Brandani. 流化床内颗粒流体两相流的CFD模拟[J]. 化工学报, 2010, 61(9): 2192-2207. |
Zhang K, Stefano B. CFD simulation of particle-fluid two-phase flow in fluidized beds[J]. CIESC Journal, 2010, 61(9): 2192-2207. | |
103 | Wang J W. Continuum theory for dense gas-solid flow: a state-of-the-art review[J]. Chemical Engineering Science, 2020, 215: 115428. |
104 | Idol J D. Process for the manufacture of acrylonitrile: US2904580[P]. 1959-9-15. |
105 | 张沛存, 宫晓燕, 陈晓春. 丙烯腈流化床反应器性能的模拟优化[J]. 石油化工, 2009, 38(10): 1048-1053. |
Zhang P C, Gong X Y, Chen X C. Simulation and optimization of acrylonitrile fluid bed reactor[J]. Petrochemical Technology, 2009, 38(10): 1048-1053. | |
106 | 刘静, 王勤辉, 骆仲泱, 等. 600MWe超临界循环流化床锅炉的设计研究[J]. 动力工程, 2003, 23(1): 2179-2184, 2204. |
Liu J, Wang Q H, Luo Z Y, et al. Design and research on a 600MWe supercritical circulating fluidized bed boiler[J]. Power Engineering, 2003, 23(1): 2179-2184, 2204. | |
107 | 骆仲泱, 何宏舟, 王勤辉, 等. 循环流化床锅炉技术的现状及发展前景[J]. 动力工程, 2004, 24(6): 761-767. |
Luo Z Y, He H Z, Wang Q H, et al. Status quo-technology of circulating fluidized bed boiler and its prospects of development[J]. Power Engineering, 2004, 24(6): 761-767. | |
108 | 蔡润夏, 吕俊复, 凌文, 等. 超(超)临界循环流化床锅炉技术的发展[J]. 中国电力, 2016, 49(12): 1-7. |
Cai R X, Lyu J F, Ling W, et al. Progress of supercritical and ultra-supercritical circulating fluidized bed boiler technology[J]. Electric Power, 2016, 49(12): 1-7. | |
109 | 李影平. 大型循环流化床锅炉节能减排关键问题探讨[J]. 锅炉技术, 2019, 50(5): 42-46. |
Li Y P. Discussion on key problems of energy saving and emission reduction in large circulating fluidized bed boilers[J]. Boiler Technology, 2019, 50(5): 42-46. | |
110 | 王辅臣. 煤气化技术在中国: 回顾与展望[J]. 洁净煤技术, 2021, 27(1): 1-33. |
Wang F C. Coal gasification technologies in China: review and prospect[J]. Clean Coal Technology, 2021, 27(1): 1-33. | |
111 | Tian P, Wei Y X, Ye M, et al. Methanol to olefins (MTO): from fundamentals to commercialization[J]. ACS Catalysis, 2015, 5(3): 1922-1938. |
112 | Kaeding W W, Butter S A. Production of chemicals from methanol[J]. Cheminform, 1980, 61(1): 155-164. |
113 | Haag W O, Lago R M, Rodewald P G. Aromatics, light olefins and gasoline from methanol: mechanistic pathways with ZSM-5 zeolite catalyst[J]. Journal of Molecular Catalysis, 1982, 17(2/3): 161-169. |
114 | 胡浩, 应卫勇, 房鼎业. 甲醇制烯烃(MTO)多段间接换热式绝热固定床反应器的数学模拟[J]. 华东理工大学学报(自然科学版), 2010, 36(2): 180-186. |
Hu H, Ying W Y, Fang D Y. Mathematical simulation on multi-bed adiabatic reactor with indirect heat exchange for MTO reaction[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2010, 36(2): 180-186. | |
115 | 袁学民, 孙世谦, 张蒙, 等. 国内甲醇制烯烃技术最新进展[J]. 现代化工, 2012, 32(12): 29-31. |
Yuan X M, Sun S Q, Zhang M, et al. Recent domestic advances in methanol-to-olefins technology[J]. Modern Chemical Industry, 2012, 32(12): 29-31. | |
116 | MacDougall L V. Methanol to fuels routes—the achievements and remaining problems[J]. Catalysis Today, 1991, 8(3): 337-369. |
117 | Chen J Q, Vora B V, Pujadó P R, et al. Most recent developments in ethylene and propylene production from natural gas using the UOP/Hydro MTO process[J]. Studies in Surface Science and Catalysis, 2004, 147: 1-6. |
118 | 张惠明. 甲醇制低碳烯烃工艺技术新进展[J]. 化学反应工程与工艺, 2008, 24(2): 178-182. |
Zhang H M. Advances in process research of methanol to light olefins[J]. Chemical Reaction Engineering and Technology, 2008, 24(2): 178-182. | |
119 | 鞠付栋, 陈汉平, 杨海平, 等. 化工行业节能减排新技术和战略选择[J]. 化工进展, 2009, 28(S1): 1-5. |
Ju F D, Chen H P, Yang H P, et al. New technologies and strategic choices for energy conservation and emission reduction in chemical industry [J]. Chemical Industry and Engineering Progress, 2009, 28(S1): 1-5. | |
120 | 宋海民. 循环流化床锅炉对节能减排的贡献分析[J]. 科技与企业, 2014(4): 141. |
Song H M. Analysis on the contribution of circulating fluidized bed boiler to energy conservation and emission reduction [J]. Keji Yu Qiye, 2014(4): 141. | |
121 | 郭慕孙, 李洪钟. 流态化手册[M]. 北京: 化学工业出版社, 2008: 1157-1209. |
Kwauk M, Li H Z. Handbook of Fluidization[M]. Beijing: Chemical Industry Press, 2008: 1157-1209. | |
122 | 王欢, 范飞, 李鹏飞, 等. 现代煤气化技术进展及产业现状分析[J]. 煤化工, 2021, 49(4): 52-56. |
Wang H, Fan F, Li P F, et al. Modern coal gasification technology progress and industry status analysis[J]. Coal Chemical Industry, 2021, 49(4): 52-56. | |
123 | 崔普选. 煤制甲醇技术发展评述[J]. 现代化工, 2020, 40(5): 4-9. |
Cui P X. Review on development of coal-to-methanol technologies[J]. Modern Chemical Industry, 2020, 40(5): 4-9. | |
124 | 李晓宁, 封增凯, 杨波. 顺酐生产工艺路线探讨及现状分析[J]. 天津化工, 2018, 32(3): 3-5. |
Li X N, Feng Z K, Yang B. Discussion and current situation analysis of maleic anhydride production process route [J]. Tianjin Chemical Industry, 2018, 32(3): 3-5. | |
125 | 朱建君, 孙瑞, 王军峰. 正丁烷制顺酐反应技术进展[J]. 化学工程与装备, 2017(3): 163-165. |
Zhu J J, Sun R, Wang J F. Technological progress of n-butane to maleic anhydride [J]. Chemical Engineering & Equipment, 2017(3): 163-165. | |
126 | 赵锦波, 袁世岭, 蒋斌波. 正丁烷氧化制顺酐反应器技术进展[J]. 现代化工, 2016, 36(7): 47-50, 52. |
Zhao J B, Yuan S L, Jiang B B. Progress of the reactor technology for oxidation of n-butane to maleic anhydride[J]. Modern Chemical Industry, 2016, 36(7): 47-50, 52. |
[1] | Ye XU, Wenjun HUANG, Junpeng MI, Chuanchuan SHEN, Jianxiang JIN. Surge diagnosis method of centrifugal compressor based on multi-source data fusion [J]. CIESC Journal, 2023, 74(7): 2979-2987. |
[2] | Yuanjing MAO, Zhi YANG, Songping MO, Hao GUO, Ying CHEN, Xianglong LUO, Jianyong CHEN, Yingzong LIANG. Estimation of SAFT-VR Mie equation of state parameters and thermodynamic properties of C6—C10 alcohols [J]. CIESC Journal, 2023, 74(3): 1033-1041. |
[3] | Yang HE, Senhu GAO, Qingyun WU, Mingli ZHANG, Tao LONG, Pei NIU, Jinghui GAO, Yingqi MENG. Numerical study on heat and mass transfer characteristics of straight slotted fins under wet conditions [J]. CIESC Journal, 2023, 74(3): 1073-1081. |
[4] | Feng DU, Siqi YIN, Hui LUO, Wenan DENG, Chuan LI, Zhenwei HUANG, Wenjing WANG. Study on size effect of H2 adsorption and dissociation on Mo x S y clusters [J]. CIESC Journal, 2022, 73(9): 3895-3903. |
[5] | Kaiyue WANG, Yongli MA, Chen LI, Mingyan LIU. Gas-liquid mass transfer coefficients in the gas-liquid-solid micro-fluidized beds [J]. CIESC Journal, 2022, 73(8): 3529-3540. |
[6] | Xiaqi YU, Ge FENG, Jinyan ZHAO, Jiayuan LI, Shengwei DENG, Jingnan ZHENG, Wenwen LI, Yaqiu WANG, Lan SHEN, Xu LIU, Weiwei XU, Jianguo WANG, Shibin WANG, Zihao YAO, Chengli MAO. A first-principles study of the interaction between TDI-TMP-T313 and AP [J]. CIESC Journal, 2022, 73(8): 3511-3517. |
[7] | Peng WEI, Jun CHEN, Zhiguo WANG, Fei LIU. Improved productivity strategy of simulated moving bed based on binary-partial-discard [J]. CIESC Journal, 2022, 73(7): 3099-3108. |
[8] | Jihao ZHAO, Weiqiang TANG, Xiaofei XU, Shuangliang ZHAO, Jionghao HE. Adsorption energy of bonding agent on nano-filler in polymer composites [J]. CIESC Journal, 2022, 73(7): 3174-3181. |
[9] | Lingfei KONG, Yanpei CHEN, Wei WANG. Dynamic study of mesoscale structures of particles in gas-solid fluidization [J]. CIESC Journal, 2022, 73(6): 2486-2495. |
[10] | Shanwei HU, Xinhua LIU. Multiscale trans-regime EMMS modeling of gas-solid fluidization systems [J]. CIESC Journal, 2022, 73(6): 2514-2528. |
[11] | Ming JIANG, Qiang ZHOU. Progress on mechanisms of mesoscale structures and mesoscale drag model in gas-solid fluidized beds [J]. CIESC Journal, 2022, 73(6): 2468-2485. |
[12] | Chenyang ZHOU, Ying JIA, Yuemin ZHAO, Yong ZHANG, Zhijie FU, Yuqing FENG, Chenlong DUAN. Intensification of dry dense medium fluidization separation process from a mesoscale perspective [J]. CIESC Journal, 2022, 73(6): 2452-2467. |
[13] | Cong HE, Wenqi ZHONG, Guanwen ZHOU, Xi CHEN. Study on decomposition characteristics of cement raw meal in suspension furnace at high altitude [J]. CIESC Journal, 2022, 73(5): 2120-2129. |
[14] | Peng WEI, Jun CHEN, Zhiguo WANG, Fei LIU. Robust optimization of process parameters of simulated moving bed based on equilibrium theory [J]. CIESC Journal, 2022, 73(2): 792-800. |
[15] | Nan ZHOU, Zan WANG, Yingjuan SHAO, Wenqi ZHONG. Experimental study on attrition characteristics of coal tar pitch particles during gas-solid fluidization [J]. CIESC Journal, 2022, 73(2): 587-594. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||