CIESC Journal ›› 2020, Vol. 71 ›› Issue (4): 1637-1645.DOI: 10.11949/0438-1157.20190854
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Shuqi FANG1,2,3(),Chong SHI1,2,Pan LI1,2,3(),Jing BAI1,2,Chun CHANG1,2,3
Received:
2019-07-25
Revised:
2019-08-12
Online:
2020-04-05
Published:
2020-04-05
Contact:
Pan LI
方书起1,2,3(),石崇1,2,李攀1,2,3(),白净1,2,常春1,2,3
通讯作者:
李攀
作者简介:
>方书起(1964—),男,教授,基金资助:
CLC Number:
Shuqi FANG, Chong SHI, Pan LI, Jing BAI, Chun CHANG. Study on rapid pyrolysis characteristics of biomass catalyzed by Fe-Zn co-modified ZSM-5[J]. CIESC Journal, 2020, 71(4): 1637-1645.
方书起, 石崇, 李攀, 白净, 常春. Fe-Zn共改性ZSM-5催化作用下生物质快速热解特性研究[J]. 化工学报, 2020, 71(4): 1637-1645.
Add to citation manager EndNote|Ris|BibTeX
原料 | 工业分析 /% | 元素分析 /% | |||||||
---|---|---|---|---|---|---|---|---|---|
M | A | V | FC① | N | C | H | S | O① | |
杨木木屑 | 6.31 | 0.69 | 79.25 | 13.75 | 0.12 | 47.39 | 6.32 | 0.15 | 46.02 |
花生壳 | 8.24 | 2.40 | 68.07 | 21.29 | 1.04 | 43.31 | 5.83 | 0.23 | 49.59 |
Table 1 Proximate analysis and ultimate analysis of biomass
原料 | 工业分析 /% | 元素分析 /% | |||||||
---|---|---|---|---|---|---|---|---|---|
M | A | V | FC① | N | C | H | S | O① | |
杨木木屑 | 6.31 | 0.69 | 79.25 | 13.75 | 0.12 | 47.39 | 6.32 | 0.15 | 46.02 |
花生壳 | 8.24 | 2.40 | 68.07 | 21.29 | 1.04 | 43.31 | 5.83 | 0.23 | 49.59 |
总金属量 | 缩写 |
---|---|
6%(质量)Fe | 6Fe |
6%(质量)Zn | 6Zn |
3%(质量)Fe+3%(质量)Zn | 3Fe3Zn |
Table 2 Abbreviation for catalyst nomenclature
总金属量 | 缩写 |
---|---|
6%(质量)Fe | 6Fe |
6%(质量)Zn | 6Zn |
3%(质量)Fe+3%(质量)Zn | 3Fe3Zn |
催化剂样品 | SBET/ (m2/g) | 孔体积/ (ml/g) | 平均孔径/ nm | D50/ μm | |
---|---|---|---|---|---|
未经处理的ZSM-5 | 222.44 | 0.17 | 3.05 | 8.61 | |
金属负载的ZSM-5 | 6Fe | 201.26 | 0.24 | 4.79 | 8.54 |
6Zn | 165.91 | 0.13 | 3.22 | 8.89 | |
3Fe3Zn | 181.81 | 0.15 | 3.32 | 10.72 |
Table 3 Catalyst specific surface area, pore size and particle size
催化剂样品 | SBET/ (m2/g) | 孔体积/ (ml/g) | 平均孔径/ nm | D50/ μm | |
---|---|---|---|---|---|
未经处理的ZSM-5 | 222.44 | 0.17 | 3.05 | 8.61 | |
金属负载的ZSM-5 | 6Fe | 201.26 | 0.24 | 4.79 | 8.54 |
6Zn | 165.91 | 0.13 | 3.22 | 8.89 | |
3Fe3Zn | 181.81 | 0.15 | 3.32 | 10.72 |
1 | Guo M, Song W, Buhain J. Bioenergy and biofuels: history, status, and perspective[J]. Renewable and Sustainable Energy Reviews, 2015, 42: 712-725. |
2 | Galadima A, Muraza O. In situ fast pyrolysis of biomass with zeolite catalysts for bioaromatics/gasoline production: a review[J]. Energy Conversion and Management, 2015, 105: 338-354. |
3 | Hassan H, Lim J K, Hameed B H. Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil[J]. Bioresource Technology, 2016, 221: 645-655. |
4 | 马隆龙, 唐志华, 汪丛伟, 等. 生物质能研究现状及未来发展策略[J]. 中国科学院院刊, 2019, 34(4): 434-442. |
Ma L L, Tang Z H, Wang C W, et al. Research status and future development strategy of biomass energy [J]. Proceedings of the Chinese Academy of Sciences, 2019, 34(4): 434-442. | |
5 | Kan T, Strezov V, Evans T J. Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 1126-1140. |
6 | Murillo J D, Biernacki J J, Northrup S, et al. Biomass pyrolysis kinetics: a review of molecular-scale modeling contributions[J]. Brazilian Journal of Chemical Engineering, 2017, 34(1): 1-18. |
7 | Kim J S. Production, separation and applications of phenolic-rich bio-oil — a review[J]. Bioresource Technology, 2015, 178: 90-98. |
8 | Liu S, Xie Q, Zhang B, et al. Fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst[J]. Bioresource Technology, 2016, 204: 164-170. |
9 | 孙来芝, 陈雷, 赵保峰, 等. Mo/ZSM-5催化作用下生物质快速热解制生物油实验研究[J]. 化工学报, 2019, 70 (8): 3160-3166. |
Sun L Z, Chen L, Zhao B F, et al. Mo/ZSM-5 catalyzed rapid pyrolysis of biomass to bio-oil [J]. CIESC Journal, 2019, 70 (8): 3160-3166. | |
10 | Patel M. Catalytic fast pyrolysis of sugarcane bagasse using Mo2C/Al2O3[C]//2nd International Congress on Catalysis for Biorefineries. Dalian: Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 2013. |
11 | Yao G, Wu G, Dai W, et al. Hydrodeoxygenation of lignin-derived phenolic compounds over bi-functional Ru/H-Beta under mild conditions[J]. Fuel, 2015, 150: 175-183. |
12 | Stefanidis S D, Kalogiannis K G, Iliopoulou E F, et al. In-situ upgrading of biomass pyrolysis vapors: catalyst screening on a fixed bed reactor[J]. Bioresource Technology, 2011, 102(17): 8261-8267. |
13 | Stefanidis S D, Karakoulia S A, Kalogiannis K G, et al. Natural magnesium oxide (MgO) catalysts: a cost-effective sustainable alternative to acid zeolites for the in situ upgrading of biomass fast pyrolysis oil[J]. Applied Catalysis B: Environmental, 2016, 196: 155-173. |
14 | Che Q F, Yang M J, Wang X H, et al. Aromatics production with metal oxides and ZSM-5 as catalysts in catalytic pyrolysis of wood sawdust[J]. Fuel Processing Technology, 2019, 188: 146-152. |
15 | Yildiz G, Ronsse F, van Duren R, et al. Challenges in the design and operation of processes for catalytic fast pyrolysis of woody biomass[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 1596-1610. |
16 | Che Q F, Yang M J, Wang X H, et al. Influence of physicochemical properties of metal modified ZSM-5 catalyst on benzene, toluene and xylene production from biomass catalytic pyrolysis[J]. Bioresource Technology, 2019, 278: 248-254. |
17 | 王达锐. ZSM-5分子筛孔道和结构多级化的方法及其催化性能研究[D]. 上海: 华东师范大学, 2016. |
Wang D R. Study on the method and catalytic performance of ZSM-5 molecular sieve pores and structures[D]. Shanghai: East China Normal University, 2016. | |
18 | Cheng Y T, Jae J, Shi J, et al. Production of renewable aromatic compounds by catalytic fast pyrolysis of lignocellulosic biomass with bifunctional Ga/ZSM-5 catalysts[J]. Angewandte Chemie International Edition, 2012, 51(6): 1387-1390. |
19 | Iliopoulou E F, Stefanidis S, Kalogiannis K, et al. Pilot-scale validation of Co-ZSM-S catalyst performance in the catalytic upgrading of biomass pyrolysis vapours[J]. Green Chem. , 2014, 16 (2): 662-674. |
20 | Fanchiang W L, Lin Y C. Catalytic fast pyrolysis of furfural over H-ZSM-5 and Zn/H-ZSM-5 catalysts[J]. Applied Catalysis A: General, 2012, 419: 102-110. |
21 | 陈艳艳. ZSM-5分子筛合成、改性及液化气芳构化研究[D]. 淄博: 山东理工大学, 2014. |
Chen Y Y. Synthesis, modification and liquefied gas aromatization of ZSM-5 molecular sieve[D]. Zibo: Shandong University of Technology, 2014. | |
22 | 杨华, 黄丽, 刘石彩, 等. 竹屑热解过程及产物特征研究[J]. 太阳能学报, 2017, 38(5): 1431-1439. |
Yang H, Huang L, Liu S C, et al. Study on pyrolysis process and product characteristics of bamboo chips[J]. Acta Energia Sinica, 2017, 38(5): 1431-1439. | |
23 | Elif S, Başak B U, Esin A V. Upgrading of fast pyrolysis bio-oil over Fe modified ZSM-5 catalyst to enhance the formation of phenolic compounds[J]. International Journal of Hydrogen Energy, 2017, 42(33): 21476-21486. |
24 | 石坤, 仲兆平, 王佳, 等. 改性HZSM-5催化微波预处理竹木快速热解[J]. 化工进展, 2018, 37(6): 150-156. |
Shi K, Zhong Z P, Wang J, et al. Rapid pyrolysis of bamboo wood catalyzed by modified HZSM-5 under microwave pretreatment[J]. Chemical Industry and Engineering Progress, 2018, 37(6): 150-156. | |
25 | 唐松山, 泮泽优, 张长森, 等. 碱改性HZSM-5催化热解木质素催化剂失活分析[J]. 化工学报, 2017, 68(12): 4739-4749. |
Tang S S, Pan Z Y, Zhang C S, et al. Deactivation analysis of catalyzed pyrolysis lignin catalyst by alkali-modified HZSM-5[J]. CIESC Journal, 2017, 68(12): 4739-4749. | |
26 | 刘阳, 刘捷成, 俞海淼, 等. 新型镍基镁渣催化重整松木热解挥发分焦油析出特性研究[J]. 化工学报, 2019, 70 (8): 2991-2999. |
Liu Y, Liu J C, Yu H M, et al. Study on the tar separation characteristics of pyrolysis volatiles of pine wood by new nickel-based magnesium slag[J]. CIESC Journal, 2019, 70(8): 2991-2999. | |
27 | Foster A J, Jae J, Cheng Y T, et al. Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5[J]. Applied Catalysis A General, 2012, 423/424: 154-161. |
28 | Xu J, Liao Y, Lin Y, et al. Study on catalytic pyrolysis of eucalyptus to produce aromatic hydrocarbons by Zn-Fe co-modified HZSM-5 catalysts[J]. Journal of Analytical and Applied Pyrolysis, 2019, 139: 96-103. |
29 | Li J J, Wang X, Tang X D, et al. Upgrading of heavy oil by thermal treatment in the presence of alkali-treated Fe/ZSM-5, glycerol, and biomass[J]. Fuel Processing Technology, 2019, 188: 137-145. |
30 | Wen C Y, Wang C G, Chen L G, et al. Effect of hierarchical ZSM-5 zeolite support on direct transformation from syngas to aromatics over the iron-based catalyst[J]. Fuel, 2019, 244: 492-498. |
31 | Xue X F, Liu Y W, Wu L, et al. Catalytic fast pyrolysis of maize straw with a core–shell ZSM-5@SBA-15 catalyst for producing phenols and hydrocarbons[J]. Bioresource Technology, 2019, 289: 121691. |
32 | Li J, Li X, Zhou G, et al. Catalytic fast pyrolysis of biomass with mesoporous ZSM-5 zeolites prepared by desilication with NaOH solutions[J]. Applied Catalysis A: General, 2014, 470: 115-122. |
[1] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[2] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[3] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[4] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[5] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[6] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[7] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[8] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[9] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[10] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[11] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[12] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[13] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[14] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[15] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||