CIESC Journal ›› 2022, Vol. 73 ›› Issue (2): 699-711.DOI: 10.11949/0438-1157.20211387
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Ming HUANG(),Liang ZHU,Zixia DING,Yiting MAO,Zhongqing MA()
Received:
2021-09-27
Revised:
2021-10-22
Online:
2022-02-18
Published:
2022-02-05
Contact:
Zhongqing MA
通讯作者:
马中青
作者简介:
黄明(1996—),男,博士研究生,基金资助:
CLC Number:
Ming HUANG, Liang ZHU, Zixia DING, Yiting MAO, Zhongqing MA. Synergistic interactions of biomass three-component and low-density polyethylene during co-catalytic fast pyrolysis for the production of light aromatics[J]. CIESC Journal, 2022, 73(2): 699-711.
黄明, 朱亮, 丁紫霞, 毛一婷, 马中青. 生物质三组分与低密度聚乙烯共催化热解制取轻质芳烃的协同作用机理[J]. 化工学报, 2022, 73(2): 699-711.
Add to citation manager EndNote|Ris|BibTeX
原料 | 元素分析/% | 工业分析/% | 有效 氢碳比 | 低位热值/ (MJ/kg) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
C | H | O | N | S | 挥发分 | 固定碳 | 灰分 | |||
杨木 | 47.21 | 6.04 | 46.74 | 0.01 | 0.00 | 87.95 | 10.93 | 1.12 | 0.050 | 16.25 |
木质素 | 63.58 | 5.35 | 30.52 | 0.55 | 0.00 | 66.24 | 33.70 | 0.06 | 0.289 | 23.72 |
纤维素 | 43.21 | 6.30 | 50.33 | 0.00 | 0.16 | 94.41 | 5.59 | 0.00 | 0.002 | 14.62 |
木聚糖 | 42.99 | 6.43 | 50.40 | 0.00 | 0.18 | 93.30 | 6.70 | 0.00 | 0.036 | 14.73 |
LDPE | 84.21 | 14.29 | 1.47 | 0.03 | 0.00 | 99.79 | 0.21 | 0.00 | 2.010 | 48.83 |
Table 1 Ultimate and proximate analysis, and calorific value of poplar wood, three major components of biomass, and LDPE
原料 | 元素分析/% | 工业分析/% | 有效 氢碳比 | 低位热值/ (MJ/kg) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
C | H | O | N | S | 挥发分 | 固定碳 | 灰分 | |||
杨木 | 47.21 | 6.04 | 46.74 | 0.01 | 0.00 | 87.95 | 10.93 | 1.12 | 0.050 | 16.25 |
木质素 | 63.58 | 5.35 | 30.52 | 0.55 | 0.00 | 66.24 | 33.70 | 0.06 | 0.289 | 23.72 |
纤维素 | 43.21 | 6.30 | 50.33 | 0.00 | 0.16 | 94.41 | 5.59 | 0.00 | 0.002 | 14.62 |
木聚糖 | 42.99 | 6.43 | 50.40 | 0.00 | 0.18 | 93.30 | 6.70 | 0.00 | 0.036 | 14.73 |
LDPE | 84.21 | 14.29 | 1.47 | 0.03 | 0.00 | 99.79 | 0.21 | 0.00 | 2.010 | 48.83 |
Fig.3 Effect of the types of catalyst on the product distribution of bio-oil derived from catalytic fast pyrolysis of poplar wood and three major components of biomass
Fig.6 Distribution of bio-oil components and synergistic reaction abundance derived from co-catalytic fast pyrolysis of three major components of biomass and LDPE
1 | Zhang H Y, Nie J L, Xiao R, et al. Catalytic co-pyrolysis of biomass and different plastics (polyethylene, polypropylene, and polystyrene) to improve hydrocarbon yield in a fluidized-bed reactor[J]. Energy & Fuels, 2014, 28(3): 1940-1947. |
2 | Ding K, He A X, Zhong D X, et al. Improving hydrocarbon yield via catalytic fast co-pyrolysis of biomass and plastic over ceria and HZSM-5: an analytical pyrolyzer analysis[J]. Bioresource Technology, 2018, 268: 1-8. |
3 | Dorado C, Mullen C A, Boateng A A. H-ZSM5 catalyzed co-pyrolysis of biomass and plastics[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(2):301-311. |
4 | Zhang H Y, Xiao R, Nie J L, et al. Catalytic pyrolysis of black-liquor lignin by co-feeding with different plastics in a fluidized bed reactor[J]. Bioresource Technology, 2015, 192: 68-74. |
5 | Shen D K, Zhao J, Xiao R. Catalytic transformation of lignin to aromatic hydrocarbons over solid-acid catalyst: effect of lignin sources and catalyst species[J]. Energy Conversion and Management, 2016, 124: 61-72. |
6 | Artetxe M, Lopez G, Amutio M, et al. Light olefins from HDPE cracking in a two-step thermal and catalytic process[J]. Chemical Engineering Journal, 2012, 207/208: 27-34. |
7 | Huang M, Xu J L, Ma Z Q, et al. Bio-BTX production from the shape selective catalytic fast pyrolysis of lignin using different zeolite catalysts: relevance between the chemical structure and the yield of bio-BTX[J]. Fuel Processing Technology, 2021, 216: 106792. |
8 | 孙来芝, 陈雷, 赵保峰, 等. Mo/ZSM-5催化作用下生物质快速热解制生物油实验研究[J]. 化工学报, 2019, 70(8): 3160-3166. |
Sun L Z, Chen L, Zhao B F, et al. Experiment research on catalytic fast pyrolysis of biomass into bio-oils over Mo/ZSM-5 catalyst[J]. CIESC Journal, 2019, 70(8): 3160-3166. | |
9 | Ryu H W, Kim D H, Jae J, et al. Recent advances in catalytic co-pyrolysis of biomass and plastic waste for the production of petroleum-like hydrocarbons[J]. Bioresource Technology, 2020, 310: 123473. |
10 | Shadangi K P, Mohanty K. Co-pyrolysis of Karanja and Niger seeds with waste polystyrene to produce liquid fuel[J]. Fuel, 2015, 153:492-498. |
11 | Uzoejinwa B B, He X H, Wang S, et al. Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: recent progress and future directions elsewhere worldwide[J]. Energy Conversion and Management, 2018, 163: 468-492. |
12 | Dorado C, Mullen C A, Boateng A A. Origin of carbon in aromatic and olefin products derived from HZSM-5 catalyzed co-pyrolysis of cellulose and plastics via isotopic labeling[J]. Applied Catalysis B: Environmental, 2015, 162: 338-345. |
13 | Hendriks A T W M, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass[J]. Bioresource Technology, 2009, 100(1): 10-18. |
14 | Wang S R, Liu Q, Liao Y F, et al. A study on the mechanism research on cellulose pyrolysis under catalysis of metallic salts[J]. Korean Journal of Chemical Engineering, 2007, 24(2): 336-340. |
15 | Zhang H Y, Cheng Y T, Vispute T P, et al. Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: the hydrogen to carbon effective ratio[J]. Energy & Environmental Science, 2011, 4(6): 2297. |
16 | Li Z Y, Zhong Z P, Zhang B, et al. Catalytic fast co-pyrolysis of waste greenhouse plastic films and rice husk using hierarchical micro-mesoporous composite molecular sieve[J]. Waste Management, 2020, 102: 561-568. |
17 | 姚维坤, 周国强, 张先龙, 等. 复合改性ZSM-5催化热解松木和低密度聚乙烯的研究[J]. 太阳能学报, 2016, 37(6): 1521-1527. |
Yao W K, Zhou G Q, Zhang X L, et al. Catalytic co-pyrolysis of pinewood and low-density polyethylene with modified ZSM-5 zeolite catalysts[J]. Acta Energiae Solaris Sinica, 2016, 37(6): 1521-1527. | |
18 | Liu Q, Zhong Z P, Wang S R, et al. Interactions of biomass components during pyrolysis: a TG-FTIR study[J]. Journal of Analytical and Applied Pyrolysis, 2011, 90(2):213-218. |
19 | Hosoya T, Kawamoto H, Saka S. Solid/liquid and vapor-phase interactions between cellulose- and lignin-derived pyrolysis products[J]. Journal of Analytical and Applied Pyrolysis, 2009, 85(1/2): 237-246. |
20 | Worasuwannarak N, Sonobe T, Tanthapanichakoon W. Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique[J]. Journal of Analytical and Applied Pyrolysis, 2007, 78(2): 265-271. |
21 | Hosoya T, Kawamoto H, Saka S. Cellulose-hemicellulose and cellulose-lignin interactions in wood pyrolysis at gasification temperature[J]. Journal of Analytical and Applied Pyrolysis, 2007, 80(1): 118-125. |
22 | 惠贺龙, 李松庚, 宋文立. 生物质与废塑料催化热解制芳烃(Ⅰ): 协同作用的强化[J]. 化工学报, 2017, 68(10): 3832-3840. |
Hui H L, Li S G, Song W L. Aromatic hydrocarbon from catalytic pyrolysis of biomass and plastic wastes(Ⅰ): Enhancing synergistic effect[J]. CIESC Journal, 2017, 68(10): 3832-3840. | |
23 | Wu S L, Shen D K, Hu J, et al. Cellulose-hemicellulose interactions during fast pyrolysis with different temperatures and mixing methods[J]. Biomass and Bioenergy, 2016, 95: 55-63. |
24 | Wu S L, Shen D K, Hu J, et al. Cellulose-lignin interactions during fast pyrolysis with different temperatures and mixing methods[J]. Biomass and Bioenergy, 2016, 90: 209-217. |
25 | 范洪刚, 赵丹丹, 顾菁, 等. 生物质三组分二元混合热解特性研究[J]. 化工学报, 2021, 72(7): 3788-3800. |
Fan H G, Zhao D D, Gu J, et al. Study on the pyrolysis characteristics of binary mixture of biomass three-component[J]. CIESC Journal, 2021, 72(7): 3788-3800. | |
26 | Jin W, Shen D K, Liu Q, et al. Evaluation of the co-pyrolysis of lignin with plastic polymers by TG-FTIR and Py-GC/MS[J]. Polymer Degradation and Stability, 2016, 133: 65-74. |
27 | Li X Y, Zhang H F, Li J, et al. Improving the aromatic production in catalytic fast pyrolysis of cellulose by co-feeding low-density polyethylene[J]. Applied Catalysis A: General, 2013, 455: 114-121. |
28 | Zheng Y W, Wang J D, Liu C, et al. Enhancing the aromatic hydrocarbon yield from the catalytic copyrolysis of xylan and LDPE with a dual-catalytic-stage combined CaO/HZSM-5 catalyst[J]. Journal of the Energy Institute, 2020, 93(5): 1833-1847. |
29 | Ma Z Q, Custodis V, van Bokhoven J A. Selective deoxygenation of lignin during catalytic fast pyrolysis[J]. Catalysis Science & Technology, 2014, 4(3): 766. |
30 | Tang Z Y, Chen W, Hu J H, et al. Co-pyrolysis of microalgae with low-density polyethylene (LDPE) for deoxygenation and denitrification[J]. Bioresource Technology, 2020, 311: 123502. |
31 | Ma Z Q, Wang J H, Zhou H Z, et al. Relationship of thermal degradation behavior and chemical structure of lignin isolated from palm kernel shell under different process severities[J]. Fuel Processing Technology, 2018, 181: 142-156. |
32 | Wang K G, Kim K H, Brown R C. Catalytic pyrolysis of individual components of lignocellulosic biomass[J]. Green Chemistry, 2014, 16(2): 727-735. |
33 | Wu S L, Kang D, Zhang H Y, et al. The oxidation characteristics of furan derivatives and binary TPGME blends under engine relevant conditions[J]. Proceedings of the Combustion Institute, 2019, 37(4): 4635-4643. |
34 | Patwardhan P R, Satrio J A, Brown R C, et al. Product distribution from fast pyrolysis of glucose-based carbohydrates[J]. Journal of Analytical and Applied Pyrolysis, 2009, 86(2): 323-330. |
35 | Nowakowski D J, Woodbridge C R, Jones J M. Phosphorus catalysis in the pyrolysis behaviour of biomass[J]. Journal of Analytical and Applied Pyrolysis, 2008, 83(2): 197-204. |
36 | Nowakowski D J, Jones J M. Uncatalysed and potassium-catalysed pyrolysis of the cell-wall constituents of biomass and their model compounds[J]. Journal of Analytical and Applied Pyrolysis, 2008, 83(1): 12-25. |
37 | 仉利, 姚宗路, 赵立欣, 等. 生物质热化学转化提质及其催化剂研究进展[J]. 化工学报, 2020, 71(8): 3416-3427. |
Zhang L, Yao Z L, Zhao L X, et al. Research progress on thermochemical conversion of biomass to enhance quality and catalyst[J]. CIESC Journal, 2020, 71(8): 3416-3427. | |
38 | 蒋丽群, 郑安庆, 王小波, 等. 生物质定向快速热解制备左旋葡聚糖和芳烃的研究进展[J]. 新能源进展, 2018, 6(5): 402-409. |
Jiang L Q, Zheng A Q, Wang X B, et al. Progress of biomass fast pyrolysis to produce levoglucosan and aromatics[J]. Advances in New and Renewable Energy, 2018, 6(5): 402-409. | |
39 | Zhang X S, Lei H W, Zhu L, et al. Enhancement of jet fuel range alkanes from co-feeding of lignocellulosic biomass with plastics via tandem catalytic conversions[J]. Applied Energy, 2016, 173: 418-430. |
[1] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[2] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[3] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[4] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[5] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[6] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[7] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[8] | Xiaokun HE, Rui LIU, Yuan XUE, Ran ZUO. Review of gas phase and surface reactions in AlN MOCVD [J]. CIESC Journal, 2023, 74(7): 2800-2813. |
[9] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[10] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[11] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[12] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
[13] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
[14] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[15] | Chen WANG, Xiufeng SHI, Xianfeng WU, Fangjia WEI, Haohong ZHANG, Yin CHE, Xu WU. Preparation of Mn3O4 catalyst by redox method and study on its catalytic oxidation performance and mechanism of toluene [J]. CIESC Journal, 2023, 74(6): 2447-2457. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||